ATTACHMENT **F**

IMPORT MATERIAL ANALYTICAL LABORATORY REPORTS

BERM

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, August 27, 2015

Terry Rice Columbia West Engineering, Inc. 11917 NE 95th Street Vancouver, WA 98682

RE: Storedahl-Evraz / 100

Enclosed are the results of analyses for work order <u>A5G0664</u>, which was received by the laboratory on 7/23/2015 at 4:55:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

Dund la fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL REPORT FOR SAMPLES

L		EID Laboratory ID Matrix Date Sampled Date Received								
	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
	Owl Creek BF	A5G0664-01	Soil	07/23/15 15:00	07/23/15 16:55					

SAMBLE INCORMATION

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:56

ANALYTICAL CASE NARRATIVE

Work Order: A5G0664

Amended Report Revision 1:

Changes to Semi-Volatile Reporting Limits-

This report supersedes all previous reports.

The final report has been amended to report the 8270 Semi-Volatiles to lower reporting limits.

Darrell Auvil Project Manager 8/27/2015

Apex Laboratories

Quant la fail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

		Polych	nlorinated Bip	phenyls by EF	PA 8082A			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Owl Creek BF (A5G0664-01)			Matrix: Soil	В	atch: 50706	31		C-0
Aroclor 1016	ND		9.96	ug/kg dry	1	07/24/15 08:38	EPA 8082A	
Aroclor 1221	ND		9.96	"	"	"	"	
Aroclor 1232	ND		9.96	"	"	"	"	
Aroclor 1242	ND		9.96	"	"	"	"	
Aroclor 1248	ND		9.96	"	"	"	"	
Aroclor 1254	ND		9.96	"	"	"	"	
Aroclor 1260	ND		9.96	"	"	"		
Surrogate: Decachlorobiphenyl (Surr))	Re	ecovery: 95 %	Limits: 72-126%	"			

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

		Organ	ochlorine Pe	sticides by Ef	PA 8081B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Owl Creek BF (A5G0664-01)			Matrix: Soil	В	atch: 50706	15		
Aldrin	ND		0.996	ug/kg dry	1	07/24/15 10:42	EPA 8081B	
alpha-BHC	ND		0.996	"	"	"	"	
beta-BHC	ND		0.996	"			"	
delta-BHC	ND		0.996	"	"	"	"	
gamma-BHC (Lindane)	ND		0.996	"	"	"	"	
cis-Chlordane	ND		0.996	"	"	"	"	
trans-Chlordane	ND		0.996	"	"	"	"	
4,4'-DDD	ND		0.996	"	"	"	"	
4,4'-DDE	ND		0.996	"	"	"	"	
4,4'-DDT	ND		0.996	"	"	"	"	
Dieldrin	ND		0.996	"	"	"	"	
Endosulfan I	ND		0.996	"	"	"	"	
Endosulfan II	ND		0.996	"	"	"	"	
Endosulfan sulfate	ND		0.996	"	"	"	"	
Endrin	ND		0.996	"	"	"	"	
Endrin Aldehyde	ND		0.996	"	"	"	"	
Endrin ketone	ND		0.996	"	"	"	"	
Heptachlor	ND		0.996	"	"	"	"	
Heptachlor epoxide	ND		0.996	"	"	"	"	
Methoxychlor	ND		2.99	"		"	"	
Chlordane (Technical)	ND		29.9	"	"	"	"	
Toxaphene (Total)	ND		29.9	"	"	"	"	
Surrogate: 2,4,5,6-TCMX (Surr)		Re	ecovery: 82 %	Limits: 42-129%	"		"	

100%

Limits: 65-151 %

Apex Laboratories

Decachlorobiphenyl (Surr)

Dund by fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

Matrix Soil Batch: 5070632 Septembrook Soil Septembrook Se			Semivolat	ile Organic Co	mpounds b	y EPA 8270)D		
Matrix Soil Batch: 5070632				Reporting					
Acenaphthene ND 9.97 ug/kg dry 1 0724/15 12:45 EPA 8270D Acenaphthylene ND 9.97 " g/kg dry " " " " " " " " " " " " " " " " " " "	Analyte	Result	MDL				•	Method	Notes
Acenaphthylene ND 9.97 " " " " " " " Anthracene ND 9.97 " " " " " " " " " " " " " " " " " " "	Owl Creek BF (A5G0664-01)			Matrix: Soil	В	atch: 50706	32		
Anthracene ND 9.97	Acenaphthene	ND		9.97	ug/kg dry	1	07/24/15 12:45	EPA 8270D	
Benza(a)anthracene ND 9.97 " " " " " " " " " " " " " " " " " " "	Acenaphthylene	ND		9.97	"	"	"	"	
Benzo(b)proree ND 14.9 " " " " " " " " " Benzo(b)fluoranthene ND 14.9 " " " " " " " " " " " " " " " " " " "	Anthracene	ND		9.97	"	"		"	
Beruzo(h)pyreue ND	Benz(a)anthracene	ND		9.97		"	"	"	
14.9	Benzo(a)pyrene	ND		14.9		"	"	"	
Part	Benzo(b)fluoranthene	ND		14.9		"	"	"	
Selfazog ND	Benzo(k)fluoranthene	ND		14.9		"		"	
Dibenz(a,h)anthracene ND	Benzo(g,h,i)perylene	ND		9.97		"	"	"	
Diocardenee ND	Chrysene	ND		9.97	"	"	"	"	
Fluorantene ND 9.97	Dibenz(a,h)anthracene	ND		9.97	"	"	"		
ND	Fluoranthene	ND		9.97		"	"	"	
Markethylaphthalene ND	Fluorene	ND		9.97		"	"	"	
Principal pluntaries ND 19.9	Indeno(1,2,3-cd)pyrene	ND		9.97		"	"	"	
19-9	1-Methylnaphthalene	ND		19.9		"	"	"	
Pyrene ND 9.97 " " " " " " " "	2-Methylnaphthalene	ND		19.9	"	"	"	"	
Pyrene ND 9.97 " <	Naphthalene	ND		19.9		"	"	"	
Prince ND	Phenanthrene	ND		9.97		"	"	"	
Dibenzofuran ND 14.9 Dibenzofuran ND 99.7 " " " " " " " " " " " " " " " " " " "	Pyrene	ND		9.97		"	"	"	
4-Chloro-3-methylphenol ND 99.7 " " " " " " " " " " " " " " " " " " "	Carbazole	ND		14.9		"	"	"	
2-Chlorophenol ND 49.7 " " " " " " 2,4-Dichlorophenol ND 49.7 " " " " " " " " " " 2,4-Dinethylphenol ND 49.7 " " " " " " " " " " " " " " " " " " "	Dibenzofuran	ND		9.97		"	"	"	
2.4-Dichlorophenol ND 49.7 " " " " " " " 2.4-Dimethylphenol ND 49.7 " " " " " " " " " " " " " " " " " " "	4-Chloro-3-methylphenol	ND		99.7		"	"	"	
2,4-Dimethylphenol ND 49.7 " " " " " " " " " " " " " " " " " " "	2-Chlorophenol	ND		49.7		"	"	"	
2,4-Dinitrophenol ND 249 " " " " " " " 4,6-Dinitro-2-methylphenol ND 249 " " " " " " " " " " " " " " " " " " "	2,4-Dichlorophenol	ND		49.7		"	"	"	
4,6-Dinitro-2-methylphenol ND 249 " " " " " " " " " " " " " " " " " " "	2,4-Dimethylphenol	ND		49.7	"		"	"	
2-Methylphenol ND 24.9 " " " " " " " " " " " " " " " " " " "	2,4-Dinitrophenol	ND		249	"	"	"	"	
24.9 3+4-Methylphenol(s) ND 24.9 " " " " " " 2-Nitrophenol ND 99.7 " " " " " " " " " " " " " " " " " " "	4,6-Dinitro-2-methylphenol	ND		249	"		"	"	
2-Nitrophenol (ND 99.7 " " " " " " 4-Nitrophenol (PCP) ND 99.7 " " " " " " " " " " " " " " " " " " "	2-Methylphenol	ND		24.9	"		"	"	
4-Nitrophenol ND 99.7 " " " " " " " " " " " " " " " " " " "	3+4-Methylphenol(s)	ND		24.9	"		"	"	
4-Nitrophenol ND 99.7 " " " " " " " " " " " " " " " " " " "	2-Nitrophenol	ND		99.7	"		"	"	
Pentachlorophenol (PCP) ND 99.7 " " " " " Phenol ND 19.9 " " " " " 2,3,4,6-Tetrachlorophenol ND 49.7 " " " " " 2,3,5,6-Tetrachlorophenol ND 49.7 " " " " "	4-Nitrophenol	ND		99.7	"		"	"	
Phenol ND 19.9 " " " " " 2,3,4,6-Tetrachlorophenol ND 49.7 " " " " " 2,3,5,6-Tetrachlorophenol ND 49.7 " " " " "	Pentachlorophenol (PCP)	ND		99.7	"			"	
2,3,4,6-Tetrachlorophenol ND 49.7 "	Phenol	ND		19.9	"	"		"	
2,3,5,6-Tetrachlorophenol ND 49.7 " " " "	2,3,4,6-Tetrachlorophenol	ND		49.7	"				
•	2,3,5,6-Tetrachlorophenol				"				
	2,4,5-Trichlorophenol	ND		49.7	"		"		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
owl Creek BF (A5G0664-01)			Matrix: Soil		atch: 50706	-		
2,4,6-Trichlorophenol	ND		49.7	ug/kg dry	1	"	EPA 8270D	
Bis(2-ethylhexyl)phthalate	ND		149	"			"	
Butyl benzyl phthalate	ND		99.7	"	"			
Diethylphthalate	ND		99.7	"	"			
Dimethylphthalate	ND		99.7	"	"			
Di-n-butylphthalate	ND		99.7	"	"		"	
Di-n-octyl phthalate	ND		99.7	"	"			
N-Nitrosodimethylamine	ND		24.9	"	"			
N-Nitroso-di-n-propylamine	ND		24.9	"	"			
N-Nitrosodiphenylamine	ND		24.9	"	"			
Bis(2-Chloroethoxy) methane	ND		24.9	"	"			
Bis(2-Chloroethyl) ether	ND		24.9	"	"			
Bis(2-Chloroisopropyl) ether	ND		24.9	"	"			
Hexachlorobenzene	ND		9.97	"	"			
Hexachlorobutadiene	ND		24.9	"				
Hexachlorocyclopentadiene	ND		49.7	"	"			
Hexachloroethane	ND		24.9	"	"			
2-Chloronaphthalene	ND		9.97	"	"			
,2-Dichlorobenzene	ND		24.9	"	"			
1,3-Dichlorobenzene	ND		24.9	"	"			
1,4-Dichlorobenzene	ND		24.9	"	"			
1,2,4-Trichlorobenzene	ND		24.9	"	"			
4-Bromophenyl phenyl ether	ND		24.9	"	"			
1-Chlorophenyl phenyl ether	ND		24.9	"	"			
Aniline	ND		49.7	"	"			
4-Chloroaniline	ND		24.9	"	"		"	
2-Nitroaniline	ND		199	"	"			
3-Nitroaniline	ND		199	"	"			
-Nitroaniline	ND		199	"				
Vitrobenzene	ND		99.7	"				
,4-Dinitrotoluene	ND		99.7	"				
,6-Dinitrotoluene	ND		99.7	"	"			
Benzoic acid	ND		1240	"				
Senzyl alcohol	ND		49.7	"				
sophorone	ND		24.9			,,		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

mul by buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

		Semivolati	le Organic	Compounds by	EPA 8270	D		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Owl Creek BF (A5G0664-01)			Matrix: So	il Ba	tch: 50706	32		
Azobenzene (1,2-DPH)	ND		24.9	ug/kg dry	1	"	EPA 8270D	
Bis(2-Ethylhexyl) adipate	ND		249		"			
3,3'-Dichlorobenzidine	ND		99.7	"				
1,2-Dinitrobenzene	ND		249					
1,3-Dinitrobenzene	ND		249		"			
1,4-Dinitrobenzene	ND		249	"	"	"		
Pyridine	ND		49.7		"	"		
Surrogate: Nitrobenzene-d5 (Surr)		Rec	overy: 110 %	Limits: 37-122%				
2-Fluorobiphenyl (Surr)			84 %	Limits: 44-115 %				
Phenol-d6 (Surr)			74 %	Limits: 33-122 %				
p-Terphenyl-d14 (Surr)			120 %	Limits: 54-127%	"			
2-Fluorophenol (Surr)			99 %	Limits: 35-115 %				
2,4,6-Tribromophenol (Surr)			110 %	Limits: 39-132 %				Q-4.

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)												
			Reporting										
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes					
Owl Creek BF (A5G0664-01)			Matrix: Soil										
Batch: 5070663													
Arsenic	ND		1.03	mg/kg dry	10	07/28/15 11:01	EPA 6020A						
Cadmium	ND		0.206		"	"	"						
Chromium	3.88		1.03	"	"	"	"						
Copper	11.7		1.03		"	"	"						
Lead	ND		1.03		"	"	"						
Manganese	145		1.03	"	"	"	"						
Mercury	ND		0.165		"	"	"						
Zinc	17.1		4.11	"	"	"	"						

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				Percent Dry Weight													
			Reporting																		
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes													
Owl Creek BF (A5G0664-01)			Matrix: Soil	В	atch: 50706	34															
% Solids	99.2		1.00	% by Weight	1	07/24/15 08:40	EPA 8000C														

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bip	henyls	by EPA 80)82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070631 - EPA 3546							Soi	l				
Blank (5070631-BLK1)				Prep	ared: 07/	23/15 12:04	Analyzed:	07/23/15 10	6:03			C-07
EPA 8082A												
Aroclor 1016	ND		8.33	ug/kg wet	1							
Aroclor 1221	ND		8.33	"	"							
Aroclor 1232	ND		8.33	"	"							
Aroclor 1242	ND		8.33	"	"							
Aroclor 1248	ND		8.33	"	"							
Aroclor 1254	ND		8.33	"	"							
Aroclor 1260	ND		8.33	"	"							
Aroclor 1262	ND		8.33	"	"							
Aroclor 1268	ND		8.33	"	"							
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 99 %	Limits: 72-1	26%	Dilı	ution: 1x					
LCS (5070631-BS1)				Prep	ared: 07/	23/15 12:04	Analyzed:	07/23/15 10	5:22			C-07
EPA 8082A												
Aroclor 1016	183		10.0	ug/kg wet	1	250		73	47-134%			
Aroclor 1260	226		10.0	"	"	"		90	53-140%			
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 92 %	Limits: 72-1	26%	Dilı	ution: 1x					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	lorine Pes	ticides	by EPA 80	81B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070615 - EPA 3546							Soil	l				
Blank (5070615-BLK1)				Prepa	ared: 07/2	23/15 07:19	Analyzed:	07/23/15 19	9:02			
EPA 8081B												
Aldrin	ND		0.833	ug/kg wet	1							
alpha-BHC	ND		0.833	"	"							
beta-BHC	ND		0.833	"	"							
delta-BHC	ND		0.833	"	"							
gamma-BHC (Lindane)	ND		0.833	"	"							
cis-Chlordane	ND		0.833	"	"							
trans-Chlordane	ND		0.833	"	"							
4,4'-DDD	ND		0.833	"	"							
4,4'-DDE	ND		0.833	"	"							
4,4'-DDT	ND		0.833	"	"							
Dieldrin	ND		0.833	"	"							
Endosulfan I	ND		0.833	"	"							
Endosulfan II	ND		0.833	"	"							
Endosulfan sulfate	ND		0.833	"	"							
Endrin	ND		0.833	"	"							
Endrin Aldehyde	ND		0.833	"	"							
Endrin ketone	ND		0.833	"	"							
Heptachlor	ND		0.833	"	"							
Heptachlor epoxide	ND		0.833	"	"							
Methoxychlor	ND		2.50	"	"							
Chlordane (Technical)	ND		25.0	"	"							
Toxaphene (Total)	ND		25.0	"								
Surr: 2,4,5,6-TCMX (Surr)		R	ecovery: 82 %	Limits: 42-1	29%	Dilu	ution: 1x					
Decachlorobiphenyl (Surr)			108 %	65-1	51 %		"					Q-41
LCS (5070615-BS1)				Prepa	ared: 07/2	23/15 07:19	Analyzed:	07/23/15 19	9:20			
EPA 8081B												
Aldrin	43.9		1.00	ug/kg wet	1	50.0		88	45-136%			
alpha-BHC	44.3		1.00	"	"	"		89	45-137%			Q-41
beta-BHC	40.7		1.00	"	"	"		81	50-136%			
delta-BHC	43.4		1.00	"	"	"		87	47-139%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoc	hlorine Pe	esticides	by EPA 80)81B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070615 - EPA 3546							Soil					
LCS (5070615-BS1)				Pre	epared: 07/	23/15 07:19	Analyzed: (07/23/15 19	9:20			
gamma-BHC (Lindane)	43.5		1.00	"	"	"		87	49-135%			
cis-Chlordane	43.1		1.00	"	"	"		86	54-133%			
trans-Chlordane	46.3		1.00	"	"	"		93	53-135%			
4,4'-DDD	49.3		1.00	"	"	"		99	56-139%			
4,4'-DDE	48.9		1.00		"	"		98	56-134%			
4,4'-DDT	48.1		1.00	"	"	"		96	50-141%			
Dieldrin	47.4		1.00	"	"	"		95	56-136%			
Endosulfan I	45.9		1.00		"	"		92	52-132%			
Endosulfan II	51.3		1.00		"	"		103	53-134%			
Endosulfan sulfate	48.2		1.00		"	"		96	55-136%			
Endrin	47.1		1.00		"	"		94	56-140%			
Endrin Aldehyde	51.8		1.00	"	"	"		104	35-137%			
Endrin ketone	47.6		1.00	"	"	"		95	55-136%			
Heptachlor	42.5		1.00		"	"		85	47-136%			
Heptachlor epoxide	45.0		1.00	"				90	52-136%			
Methoxychlor	54.7		3.00	"	"	"		109	52-143%			
Surr: 2,4,5,6-TCMX (Surr) Decachlorobiphenyl (Surr)		Re	ecovery: 76 % 106 %	Limits: 42	?-129 % 5-151 %	Dilı	ution: 1x					Q-41

Apex Laboratories

Dunel la fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

			emivolatile	Organic Co	mpoul	nas by EP/	4 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070632 - EPA 3546							Soil					
Blank (5070632-BLK1)				Prepa	ared: 07/2	23/15 12:06	Analyzed:	07/23/15 16	:38			
PA 8270D												
Acenaphthene	ND		8.34	ug/kg wet	1							
Acenaphthylene	ND		8.34	"	"							
Anthracene	ND		8.34	"	"							
Benz(a)anthracene	ND		8.34	"	"							
Benzo(a)pyrene	ND		12.5	"	"							
Benzo(b)fluoranthene	ND		12.5	"	"							
Benzo(k)fluoranthene	ND		12.5	"	"							
Benzo(b+k)fluoranthene(s)	ND		25.0	"	"							
Benzo(g,h,i)perylene	ND		8.34	"	"							
Chrysene	ND		8.34	"	"							
Dibenz(a,h)anthracene	ND		8.34	"	"							
Fluoranthene	ND		8.34	"	"							
Fluorene	ND		8.34		"							
Indeno(1,2,3-cd)pyrene	ND		8.34		"							
l-Methylnaphthalene	ND		16.7	"	"							
2-Methylnaphthalene	ND		16.7	"	"							
Naphthalene	ND		16.7	"	"							
Phenanthrene	ND		8.34	"	"							
Pyrene	ND		8.34	"	"							
Carbazole	ND		12.5									
Dibenzofuran	ND		8.34									
1-Chloro-3-methylphenol	ND		83.4									
2-Chlorophenol	ND		41.6		"							
2,4-Dichlorophenol	ND		41.6									
2,4-Dimethylphenol	ND		41.6									
2,4-Dinitrophenol	ND		208									
4,6-Dinitro-2-methylphenol	ND		208									
2-Methylphenol	ND		20.8									
3+4-Methylphenol(s)	ND		20.8									
2-Nitrophenol	ND		83.4									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	mpour	ids by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070632 - EPA 3546							Soi	ı				
Blank (5070632-BLK1)				Prepa	ared: 07/2	23/15 12:06	Analyzed:	07/23/15 16	:38			
4-Nitrophenol	ND		83.4	ug/kg wet	"							
Pentachlorophenol (PCP)	ND		83.4	"	"							
Phenol	ND		16.7	"	"							
2,3,4,6-Tetrachlorophenol	ND		41.6	"	"							
2,3,5,6-Tetrachlorophenol	ND		43.8	"	"							
2,4,5-Trichlorophenol	ND		41.6	"	"							
2,4,6-Trichlorophenol	ND		41.6	"	"							
Bis(2-ethylhexyl)phthalate	ND		125	"	"							
Butyl benzyl phthalate	ND		83.4	"	"							
Diethylphthalate	ND		83.4	"	"							
Dimethylphthalate	ND		83.4	"	"							
Di-n-butylphthalate	ND		83.4	"	"							
Di-n-octyl phthalate	ND		83.4	"	"							
N-Nitrosodimethylamine	ND		20.8	"	"							
N-Nitroso-di-n-propylamin e	ND		20.8	"	"							
e N-Nitrosodiphenylamine	ND		20.8	"	"							
Bis(2-Chloroethoxy) methane	ND		20.8	"	"							
Bis(2-Chloroethyl) ether	ND		20.8	"	"							
Bis(2-Chloroisopropyl)	ND		20.8	"	"							
Hexachlorobenzene	ND		8.34	"	"							
Hexachlorobutadiene	ND		20.8	"	"							
Hexachlorocyclopentadiene	ND		41.6	"	"							
Hexachloroethane	ND		20.8	"	"							
2-Chloronaphthalene	ND		8.34	"	"							
1,2-Dichlorobenzene	ND		20.8	"	"							
1,3-Dichlorobenzene	ND		20.8	"	"							
1,4-Dichlorobenzene	ND		20.8	"	"							
1,2,4-Trichlorobenzene	ND		20.8	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL R	Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070632 - EPA 3546							Soi	i				
Blank (5070632-BLK1)				Prepa	red: 07/	23/15 12:06	Analyzed:	07/23/15 1	6:38			
4-Bromophenyl phenyl	ND		20.8	ug/kg wet	"							
ether					,,							
4-Chlorophenyl phenyl	ND		20.8		"							
ether Aniline	ND		41.6		"							
4-Chloroaniline	ND		20.8		"							
2-Nitroaniline	ND		167		"							
3-Nitroaniline	ND		167		"							
4-Nitroaniline	ND		167									
Nitrobenzene	ND		83.4									
2,4-Dinitrotoluene	ND		83.4									
2,6-Dinitrotoluene	ND		83.4									
Benzoic acid	ND		1040									
Benzyl alcohol	ND		41.6		"							
Isophorone	ND		20.8		"							
Azobenzene (1,2-DPH)	ND		20.8		"							
Bis(2-Ethylhexyl) adipate	ND		208									
3,3'-Dichlorobenzidine	ND		83.4									
•												
1,2-Dinitrobenzene	ND		208									
1,3-Dinitrobenzene	ND		208		,,							
1,4-Dinitrobenzene	ND		208									
Pyridine	ND		41.6									
Surr: Nitrobenzene-d5 (Surr)		Recove	ry: 110 %	Limits: 37-1.		Dilı	ution: 1x					Q-4
2-Fluorobiphenyl (Surr)			90 % 77 %	44-1.			,,					
Phenol-d6 (Surr)			117%	33-1. 54-1.			"					
p-Terphenyl-d14 (Surr) 2-Fluorophenol (Surr)			91%	35-1			,,					
2,4,6-Tribromophenol (Surr)			99 %	39-1			"					Q-4.
LCS (5070632-BS1)						22/15 12:06	A 1	07/22/15 1	7.16			٠.
EPA 8270D				Ртера	nea: U//	23/15 12:06	Analyzed:	07/23/13 1	7.10			
Acenaphthene	860		10.0	ug/kg wet	1	800		107	40-122%			
Acenaphthylene	859		10.0	"	"	"		107	32-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la banil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

		s	emivolatile	Organic Co	mpou	nds by EP/	4 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070632 - EPA 3546							Soil	l				
LCS (5070632-BS1)				Prepa	ared: 07/2	23/15 12:06	Analyzed:	07/23/15 17	7:16			
Anthracene	881		10.0	ug/kg wet	"	"		110	47-123%			
Benz(a)anthracene	878		10.0	"	"	"		110	49-126%			
Benzo(a)pyrene	917		15.0	"	"	"		115	45-129%			
Benzo(b)fluoranthene	911		15.0	"	"	"		114	45-132%			
Benzo(k)fluoranthene	878		15.0	"	"	"		110	47-132%			
Benzo(b+k)fluoranthene(s)	1830		30.0	"	"	1600		114	45-132%			
Benzo(g,h,i)perylene	865		10.0	"	"	800		108	43-134%			
Chrysene	851		10.0	"	"	"		106	50-124%			
Dibenz(a,h)anthracene	834		10.0	"	"	"		104	45-134%			
Fluoranthene	897		10.0	"	"	"		112	50-127%			
Fluorene	841		10.0	"	"	"		105	43-125%			
ndeno(1,2,3-cd)pyrene	795		10.0	"	"	"		99	45-133%			
l-Methylnaphthalene	803		20.0	"	"	"		100	40-120%			
2-Methylnaphthalene	839		20.0	"	"	"		105	38-122%			
Naphthalene	814		20.0	"	"	"		102	35-123%			
Phenanthrene	825		10.0	"	"	"		103	50-121%			
Pyrene	870		10.0		"	"		109	47-127%			
Carbazole	871		15.0		"	"		109	50-122%			
Dibenzofuran	831		10.0		"	"		104	44-120%			
4-Chloro-3-methylphenol	789		100		"	"		99	45-122%			
2-Chlorophenol	844		49.9		"	"		106	34-121%			
2,4-Dichlorophenol	772		49.9	"	"	"		97	40-122%			
2,4-Dimethylphenol	872		49.9		"	"		109	30-127%			
2,4-Dinitrophenol	792		250		"	"		99	5-137%			
1,6-Dinitro-2-methylphenol	789		250					99	29-132%			
2-Methylphenol	885		25.0						32-122%			
3+4-Methylphenol(s)	846		25.0						34-120%			
2-Nitrophenol	839		100						36-123%			
4-Nitrophenol	721		100						30-132%			
Pentachlorophenol (PCP)	861		100						25-133%			
Phenol	918		20.0						34-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070632 - EPA 3546							Soil					
LCS (5070632-BS1)				Pre	pared: 07/	23/15 12:06	Analyzed: (07/23/15 1	7:16			
2,3,4,6-Tetrachlorophenol	865		49.9	ug/kg wet	"	"		108	44-125%			
2,3,5,6-Tetrachlorophenol	814		52.5	"	"	"		102	40-120%			
2,4,5-Trichlorophenol	807		49.9	"	"	"		101	41-124%			
2,4,6-Trichlorophenol	837		49.9	"	"	"		105	39-126%			
Bis(2-ethylhexyl)phthalate	865		150	"	"	"		108	51-133%			
Butyl benzyl phthalate	888		100	"	"	"		111	48-132%			
Diethylphthalate	912		100	"	"	"		114	50-124%			
Dimethylphthalate	921		100	••	"	"		115	48-124%			
Di-n-butylphthalate	982		100	"	"	"		123	51-128%			
Di-n-octyl phthalate	830		100	"	"	"		104	44-140%			
N-Nitrosodimethylamine	782		25.0	"	"	"		98	23-120%			
N-Nitroso-di-n-propylamin	966		25.0	"	"	"		121	36-120%			Q-29, Q-41
e	700		25.0		,,				20.4250			
N-Nitrosodiphenylamine	798		25.0		"			100	38-127%			
Bis(2-Chloroethoxy) methane	863		25.0					108	36-121%			
Bis(2-Chloroethyl) ether	843		25.0	"	"	"		105	31-120%			
Bis(2-Chloroisopropyl)	1060		25.0	"	"	"		132	33-131%			Q-29, Q-41
ether Hexachlorobenzene	959		10.0					120	44-122%			
Hexachlorobutadiene	936		25.0	"				117	32-123%			
Hexachlorocyclopentadiene	1120		49.9					140	5-140%			Q-41
Hexachloroethane	912		25.0	"				114	28-120%			
2-Chloronaphthalene	835		10.0	"				104	41-120%			
1,2-Dichlorobenzene	822		25.0		"			103	33-120%			
1,3-Dichlorobenzene	814		25.0					102	30-120%			
1,4-Dichlorobenzene	821		25.0					103	31-120%			
1,2,4-Trichlorobenzene	802		25.0					100	34-120%			
4-Bromophenyl phenyl	950		25.0	"		"		119	46-124%			
ether 4-Chlorophenyl phenyl	870		25.0	"				109	45-121%			
ether Aniline	686		49.9	"		"		86	7-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic	Compou	ınds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070632 - EPA 3546							Soi	ı				
LCS (5070632-BS1)				Pr	epared: 07	/23/15 12:06	Analyzed:	07/23/15 1	7:16			
4-Chloroaniline	479		25.0	ug/kg we	et "	"		60	16-120%			
2-Nitroaniline	762		200	"	"	"		95	44-127%			
3-Nitroaniline	606		200	"	"	"		76	33-120%			
4-Nitroaniline	759		200	"	"	"		95	35-120%			
Nitrobenzene	997		100			"		125	34-122%			Q-29, Q-4
2,4-Dinitrotoluene	865		100			"		108	48-126%			
2,6-Dinitrotoluene	903		100	"		"		113	46-124%			
Benzoic acid	ND		1250		"	1600		60	5-140%			
Benzyl alcohol	815		49.9		"	800		102	29-122%			
Isophorone	978		25.0		"	"		122	30-122%			Q-41
Azobenzene (1,2-DPH)	933		25.0			"		117	39-125%			
Bis(2-Ethylhexyl) adipate	856		250			"		107	60-121%			
3,3'-Dichlorobenzidine	1270		100			1600		80	22-121%			
1.2-Dinitrobenzene	825		250			800		103	44-120%			
1,3-Dinitrobenzene	829		250			"		104	42-127%			
1,4-Dinitrobenzene	914		250			"		114	37-132%			
Pyridine	716		49.9					90	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Pace	overy: 108 %	Limits: 3	7 122 %	Dil	ution: lx					Q-41
2-Fluorobiphenyl (Surr)		Nece	95 %		7-122 % 4-115 %	Ditt	ution. 1x					Q-41
Phenol-d6 (Surr)			94 %		3-122 %		"					
p-Terphenyl-d14 (Surr)			122 %		4-127 %		"					
2-Fluorophenol (Surr)			99 %	3.	5-115 %		"					
2,4,6-Tribromophenol (Surr)			116%	3.	9-132 %		"					Q-41

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	EPA 602	20 (ICPMS))					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070663 - EPA 3051	IA						Soi					
Blank (5070663-BLK1)				Prepa	ared: 07/2	24/15 08:48	Analyzed:	07/28/15 1	0:52			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Copper	ND		1.00	"	"							
Lead	ND		1.00	"	"							
Manganese	ND		1.00	"	"							
Mercury	ND		0.160	"	"							
Zinc	ND		4.00	"	"							
LCS (5070663-BS1)				Prepa	ared: 07/2	24/15 08:48	Analyzed:	07/28/15 1	0:55			
EPA 6020A												
Arsenic	56.0		1.00	mg/kg wet	10	50.0		112	80-120%			
Cadmium	54.3		0.200	"	"	"		109	"			
Chromium	52.6		1.00	"	"	"		105	"			
Copper	52.3		1.00	"	"	"		105	"			
Lead	53.8		1.00	"	"	"		108	"			
Manganese	53.5		1.00	"	"	"		107	"			
Mercury	1.07		0.160	"	"	1.00		107	"			
Zinc	58.9		4.00	"		50.0		118	"			
Duplicate (5070663-DUP1)				Prepa	ared: 07/2	24/15 08:48	Analyzed:	07/28/15 1	1:04			
QC Source Sample: Owl Creek BF EPA 6020A	(A5G0664-01)										
Arsenic	ND		1.04	mg/kg dry	10		0.617			***	40%	
Cadmium	ND		0.209	"	"		0.103			***	40%	
Chromium	3.31		1.04	"	"		3.88			16	40%	
Copper	11.7		1.04	"	"		11.7			0.6	40%	
Lead	ND		1.04	"	"		0.586			***	40%	
Manganese	147		1.04	"			145			2	40%	
Mercury	ND		0.167	"			ND				40%	
Zinc	15.6		4.17				17.1			9	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070663 - EPA 3051	A						Soil	l				
Matrix Spike (5070663-MS1)				Prep	ared: 07/	24/15 08:48	Analyzed:	07/28/15 1	1:06			
QC Source Sample: Owl Creek BF EPA 6020A	(A5G0664-0]	1)										
Arsenic	58.9		1.04	mg/kg dry	10	52.2	0.617	112	75-125%			
Cadmium	57.0		0.209	"	"	"	0.103	109	"			
Chromium	57.5		1.04	"	"	"	3.88	103	"			
Copper	64.7		1.04	"	"	"	11.7	102	"			
Lead	55.6		1.04	"	"	"	0.586	105	"			
Manganese	180		1.04	"	"	"	145	67	"			Q-03
Mercury	1.05		0.167	"	"	1.04	ND	101	"			
Zinc	73.8		4.17	"	"	52.2	17.1	109	"			

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070634 - To	otal Solids (Dry We	eiaht)					Soil					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Dund la fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:56

SAMPLE PREPARATION INFORMATION

Polychlorinated Biphenyls by EPA 8082A										
Prep: EPA 3546					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 5070631										
A5G0664-01	Soil	EPA 8082A	07/23/15 15:00	07/23/15 18:46	10.12g/5mL	10g/5mL	0.99			
		C	Organochlorine Pesti	cides by EPA 8081B						
Prep: EPA 3546					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
3atch: 5070615										
A5G0664-01	Soil	EPA 8081B	07/23/15 15:00	07/23/15 18:45	10.12g/5mL	10g/5mL	0.99			
		Sem	ivolatile Organic Con	npounds by EPA 8270	D					
Prep: EPA 3546					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 5070632										
A5G0664-01	Soil	EPA 8270D	07/23/15 15:00	07/23/15 18:41	10.12g/5mL	15g/2mL	3.71			
			Total Metals by EF	PA 6020 (ICPMS)						
Prep: EPA 3051A					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 5070663										
A5G0664-01	Soil	EPA 6020A	07/23/15 15:00	07/24/15 08:48	0.49g/50mL	0.5g/50mL	1.02			
			Percent Dr	y Weight						
Prep: Total Solids	(Dry Weight	1			Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 5070634										
A5G0664-01	Soil	EPA 8000C	07/23/15 15:00	07/23/15 20:05	1N/A/1N/A	1N/A/1N/A	NA			

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:56

Notes and Definitions

Qualifiers:

C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.

Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.

Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

--- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to finil

AMENDED REPORT

Tigard, OR 97223 12232 S.W. Garden Place 503-718-2323 Phone

503-718-0333 Fax

Columbia West Engineering, Inc. Vancouver, WA 98682 11917 NE 95th Street

> Project Number: 100 Project: Storedahl-Evraz

Project Manager: Terry Rice

08/27/15 11:56 Reported:

coc __uf___

Lab# A5g Olele4

12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333

APEX LABS

Project Mgr: TEMU RICE Phone: 360-823-2901 Fax: may 12th #d3 8082 PCBs (80824 EPA 1613 DIGGIAS # OF CONTAINERS EPA 6010 \$ 8260 RBDM VOCs Site Location NWTPH-HCID 8270 SIM PAHS NWTPH-Dx NWTPH-Gx 8260 BTEX 8270 SVOC 8260 VOC 1200-COLS LAB ID# OTT 009 DATE TIME SAMPLE ID 7/23/5/500 501 3 Special instructions include ansenic, codmium, chromium, copper, lead, manganese, zinc Normal Turn Around Time (TAT) = 7-10 Business Days YES NO 1 Day 2 Day 3 Day TAT Requested (circle) Other: Kels 4 DAY 5 DAY AMPLES ARE HELD FOR 30 DAYS RELINQUISHED/6Y RÉLINQUISHED BY: RECEIVED BY:

CHAIN OF CUSTODY

Apex Laboratories

Darrell Auvil For Darwin Thomas, Business Development Director

Pacific Testing & Inspection LLC

2417 Harrison Avenue, Centralia, WA 98531 Phone (360) 736-3922 Fax (360) 807-6022

(b) (4)			
"			
	Copyright Spears Engineering & Technical Services PS, 1996-2005		
Comments:			
Comments.			
			_
Reviewed by	y:Tim Barney		
Keviewed by	y. IIII Dainey		

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval

Pacific Testing & Inspection LLC

2417 Harrison Avenue, Centralia, WA 98531 Phone (360) 736-3922 Fax (360) 807-6022

4)	1 110110	(000) 100 00	722 Tax (000) 007 0	30 <u>22</u>	
			Copyright Spears Engineering &	Technical Services PS, 1996-2005	

Reviewed by: Tim Barney

Pacific Testing & Inspection LLC

2417 Harrison Avenue, Centralia, WA 98531 Phone (360) 736-3922 Fax (360) 807-6002

ASTM D-2419 Sand Equivalent Value of Soils and Fine Aggregate

(b) (4)		

All results apply only to actual locations and materials tested. As a mutual protection to customers, the public and ourselves, all reports are submitted as the confidential property of customers, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed By:

Tim Barney

CITY OF PORTLAND BES MIX

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 14, 2015

Nathan Cutler Strider Construction Co 4721 Northwest Drive Bellingham, WA 98226

RE: Evraz - Oregon Steel / [none]

Enclosed are the results of analyses for work order <u>A5H0142</u>, which was received by the laboratory on 8/6/2015 at 12:45:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

Dunnel la final

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION							
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
S+H-PortMix-Tual	A5H0142-01	Soil	08/06/15 12:00	08/06/15 12:45			

Apex Laboratories

Dund to Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
S+H-PortMix-Tual (A5H0142-01)			Matrix: Soil		Batch: 50801	50		C-07	
Aroclor 1016	ND	5.78	11.6	ug/kg dry	1	08/10/15 16:41	EPA 8082A		
Aroclor 1221	ND	5.78	11.6	"	"	"	"		
Aroclor 1232	ND	5.78	11.6	"	"	"	"		
Aroclor 1242	ND	5.78	11.6	"	"	"	"		
Aroclor 1248	ND	5.78	11.6	"	"	"	"		
Aroclor 1254	ND	5.78	11.6	"	"	"	"		
Aroclor 1260	ND	5.78	11.6	"	"	"	"		
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 87 %	Limits: 72-126 %	; "	"	"		

Apex Laboratories

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
S+H-PortMix-Tual (A5H0142-01RE1))		Matrix: Soil	В	atch: 508022	23		C-0
Aldrin	ND		2.25	ug/kg dry	1	08/11/15 12:13	EPA 8081B	
alpha-BHC	ND		2.25	"	"	"	"	
beta-BHC	ND		2.25	"	"	"	"	
delta-BHC	ND		2.25	"	"	"	"	
gamma-BHC (Lindane)	ND		2.25	"	"	"	"	
cis-Chlordane	ND		2.25	"	"	"	"	
trans-Chlordane	ND		2.25	"	"	"	"	
4,4'-DDD	ND		2.25	"	"	"	"	
4,4'-DDE	ND		2.25	"	"	"	"	
4,4'-DDT	ND		2.25	"	"	"	"	
Dieldrin	ND		2.25	"	"	"	"	
Endosulfan I	ND		2.25	"	"	"	"	
Endosulfan II	ND		2.25	"	"	"	"	
Endosulfan sulfate	ND		2.25	"	"	"	"	
Endrin	ND		2.25	"	"	"	"	
Endrin Aldehyde	ND		2.25	"	"	"	"	
Endrin ketone	ND		2.25	"	"	"	"	
Heptachlor	ND		2.25	"	"	"	"	
Heptachlor epoxide	ND		2.25	"	"	"	"	
Methoxychlor	ND		6.74	"	"	"	"	
Chlordane (Technical)	ND		67.4	"	"	"	"	
Toxaphene (Total)	ND		67.4	"	"	"	"	
Surrogate: 2,4,5,6-TCMX (Surr)		Re	ecovery: 66 % 1	Limits: 42-129 %	"	"	"	

110 %

Limits: 65-151 %

Apex Laboratories

Dund by hail

Decachlorobiphenyl (Surr)

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D								
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
S+H-PortMix-Tual (A5H0142-01RE2)			Matrix: Soil		atch: 50802			
Acenaphthene	ND		266	ug/kg dry	1	08/10/15 16:25	EPA 8270D	
Acenaphthylene	ND		266	ug/ug ur)	"	"	"	
Aniline	ND		266	"	"	"	"	
Anthracene	ND		266	"	"	"	"	
Azobenzene (1,2-DPH)	ND		266	"	"	"	"	
Benz(a)anthracene	ND		266	"	"	"	"	
Benzo(a)pyrene	ND		266	"	"	"	"	
Benzo(b)fluoranthene	ND		266	"	"	"	"	
Benzo(k)fluoranthene	ND		266	"	"	"	"	
Benzo(g,h,i)perylene	ND		266	"	"	"	"	
Benzoic acid	ND		1330	"	"	"	"	
Benzyl alcohol	ND		266	"	"	"	"	
Bis(2-Chloroethoxy) methane	ND		266	"	"	"	"	
Bis(2-Chloroethyl) ether	ND		266	"	"	"	"	Q-42
Bis(2-Chloroisopropyl) ether	ND		266	"	"	"	"	
Bis(2-Ethylhexyl) adipate	ND		266	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND		266	"	"	"	"	
4-Bromophenyl phenyl ether	ND		266	"	"	"	"	
Butyl benzyl phthalate	ND		266	"	"	"	"	
Carbazole	ND		266	"	"	"	"	
4-Chloroaniline	ND		266	"	"	"	"	
4-Chloro-3-methylphenol	ND		266	"	"	"	"	
2-Chloronaphthalene	ND		266	"	"	"	"	
2-Chlorophenol	ND		266	"	"	"	"	
4-Chlorophenyl phenyl ether	ND		266	"	"	"	"	
Chrysene	ND		266	"	"	"	"	
Dibenz(a,h)anthracene	ND		266	"	"	"	"	
Dibenzofuran	ND		266	"	"	"	"	
1,2-Dichlorobenzene	ND		266	"	"	"	"	
1,3-Dichlorobenzene	ND		266	"	"	"	"	
1,4-Dichlorobenzene	ND		266	"	"	"	"	
2,4-Dichlorophenol	ND		266	"	"	"	"	
Di-n-butylphthalate	ND		266	"	"	"	"	
Diethylphthalate	ND		266	"	"	"	"	
Dimethylphthalate	ND		266	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

		Semivolat	ile Organic Co	ompounds by	y EPA 8270	טו		
	D 1:) (D)	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
+H-PortMix-Tual (A5H0142-01RE2)			Matrix: Soil		atch: 50802			
2,4-Dimethylphenol	ND		266	ug/kg dry	1	"	EPA 8270D	
1,2-Dinitrobenzene	ND		266	"	"	"	"	
1,3-Dinitrobenzene	ND		266	"	"	"	"	
1,4-Dinitrobenzene	ND		266	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND		638	"	"	"	"	
2,4-Dinitrophenol	ND		266	"	"	"	"	
2,4-Dinitrotoluene	ND		266	"	"	"	"	
2,6-Dinitrotoluene	ND		266	"	"	"	"	
Di-n-octyl phthalate	ND		266	"	"	"	"	
Fluoranthene	ND		266	"	"	"	"	
Fluorene	ND		266	"	"	"	"	
Hexachlorobenzene	ND		266	"	"	"	"	
Hexachlorobutadiene	ND		266	"	"	"	"	
Hexachlorocyclopentadiene	ND		266	"	"	"	"	
Hexachloroethane	ND		266	"	"	"	"	
ndeno(1,2,3-cd)pyrene	ND		266	"	"	"	"	
sophorone	ND		266	"	"	"	"	
l-Methylnaphthalene	ND		266	"	"	"	"	
2-Methylnaphthalene	ND		266	"	"	"	"	
2-Methylphenol	ND		266	"	"	"	"	
3+4-Methylphenol(s)	ND		266	"	"	"	"	
Naphthalene	ND		266	"	"	"	"	
2-Nitroaniline	ND		266	"	"	"	"	
3-Nitroaniline	ND		266	"	"	"	"	
4-Nitroaniline	ND		266	"	"	"	"	
Nitrobenzene	ND		266	"	"	"	"	
2-Nitrophenol	ND		266	"	"	"	"	
1-Nitrophenol	ND		266	"	"	"	"	
N-Nitrosodimethylamine	ND		266	"	"	"	"	
N-Nitroso-di-n-propylamine	ND		266	"	"	"	"	
N-Nitrosodiphenylamine	ND		266	"	"	"	"	
Pentachlorophenol (PCP)	ND		266	"	"	"	"	
Phenanthrene	ND		266	"	"	"	"	
Phenol	ND		266	"	"	"	"	
Pyrene	ND		266	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to finis

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest Drive Project Number: [none] Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

		Semivolatil	e Organic	Compounds by	EPA 8270	D		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
S+H-PortMix-Tual (A5H0142-01RE2)			Matrix: So	il Ba	tch: 508020)9		
Pyridine	ND		531	ug/kg dry	1	"	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND		266	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND		266	"	"	"	"	
1,2,4-Trichlorobenzene	ND		266	"	"	"	"	
2,4,5-Trichlorophenol	ND		266	"	"	"	"	
2,4,6-Trichlorophenol	ND		266	"	"	"	"	
Surrogate: Nitrobenzene-d5 (Surr)		Rec	covery: 93 %	Limits: 37-122 %	"	"	"	·
2-Fluorobiphenyl (Surr)			85 %	Limits: 44-115 %	"	"	"	
Phenol-d6 (Surr)			83 %	Limits: 33-122 %	"	"	"	
p-Terphenyl-d14 (Surr)			97 %	Limits: 54-127 %	"	"	"	Q-4.
2-Fluorophenol (Surr)			84 %	Limits: 35-115 %	"	"	"	
2,4,6-Tribromophenol (Surr)			129 %	Limits: 39-132 %	"	"	"	Q-4

Apex Laboratories

Quand by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest Drive Project Number: [none] Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

H-PortMix-Tual (A5H0142-01) Matrix: Soil steth: 5080143 ssenic ND 1.23 mg/kg dry 10 08/06/15 21:14 EPA 6020A												
Analyte	Result	MDL	1 0	Units	Dilution	Date Analyzed	Method	Notes				
S+H-PortMix-Tual (A5H0142-01)			Matrix: Soil									
Batch: 5080143												
Arsenic	ND		1.23	mg/kg dry	10	08/06/15 21:14	EPA 6020A					
Cadmium	ND		0.246	"	"	"	"					
Chromium	8.65		1.23	"	"	"	"					
Lead	4.68		2.46	"	"	"	"					
Manganese	265		2.46	"	"	"	"					
Mercury	ND		0.0983	"	"	"	"					
Zinc	35.3		4.91	"	"	"	"					
S+H-PortMix-Tual (A5H0142-01RE	1)		Matrix: Soil									
Batch: 5080143												
Copper	19.1		4.91	mg/kg dry	10	08/07/15 13:21	EPA 6020A					

Apex Laboratories

Dund to Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
S+H-PortMix-Tual (A5H0142-01)			Matrix: Soil	Ва	atch: 508010	63		
% Solids	82.9		1.00	% by Weight	1	08/10/15 08:27	EPA 8000C	

Apex Laboratories

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bip	henyls	by EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080150 - EPA 3546							Soi	<u> </u>				
Blank (5080150-BLK1)				Prepa	ared: 08/	07/15 07:18	Analyzed:	08/10/15 15	5:28			C-07
EPA 8082A												
Aroclor 1016	ND	4.17	8.33	ug/kg wet	1							
Aroclor 1221	ND	4.17	8.33	"	"							
Aroclor 1232	ND	4.17	8.33	"	"							
Aroclor 1242	ND	4.17	8.33	"	"							
Aroclor 1248	ND	4.17	8.33	"	"							
Aroclor 1254	ND	4.17	8.33	"	"							
Aroclor 1260	ND	4.17	8.33	"	"							
Surr: Decachlorobiphenyl (Surr)		Re	covery: 97 %	Limits: 72-1	26 %	Dilu	ition: 1x					
LCS (5080150-BS1)				Prepa	ared: 08/	07/15 07:18	Analyzed:	08/10/15 15	5:46			C-07
EPA 8082A												
Aroclor 1016	164	5.00	10.0	ug/kg wet	1	250		66	47-134%			
Aroclor 1260	236	5.00	10.0	"	"	"		95	53-140%			
Surr: Decachlorobiphenyl (Surr)		Re	covery: 99 %	Limits: 72-1	26 %	Dilu	ition: 1x					
Matrix Spike (5080150-MS1)				Prepa	ared: 08/	07/15 07:18	Analyzed:	08/10/15 17	7:19			C-07
QC Source Sample: S+H-PortMix-T	Tual (A5H014	(2-01)										
EPA 8082A												
Aroclor 1016	198	5.86	11.7	ug/kg dry	1	293	ND	68	47-134%			
Aroclor 1260	276	5.86	11.7	"	"	"	ND	94	53-140%			
Surr: Decachlorobiphenyl (Surr)		Re	covery: 95 %	Limits: 72-1	26 %	Dilu	tion: Ix					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organocl	nlorine Pes	ticides	by EPA 80	081B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080223 - EPA 3546	/3640A (GF	PC)					Soi	<u> </u>				
Blank (5080223-BLK1)				Prepa	ared: 08/0	07/15 07:20	Analyzed:	08/11/15 11	:36			C-05
EPA 8081B												
Aldrin	ND		1.82	ug/kg wet	1							
alpha-BHC	ND		1.82	"	"							
beta-BHC	ND		1.82	"	"							
delta-BHC	ND		1.82	"	"							
gamma-BHC (Lindane)	ND		1.82	"	"							
cis-Chlordane	ND		1.82	"	"							
trans-Chlordane	ND		1.82	"	"							
4,4'-DDD	ND		1.82	"	"							
4,4'-DDE	ND		1.82	"	"							
4,4'-DDT	ND		1.82	"	"							
Dieldrin	ND		1.82	"	"							
Endosulfan I	ND		1.82	"	"							
Endosulfan II	ND		1.82	"	"							
Endosulfan sulfate	ND		1.82	"	"							
Endrin	ND		1.82	"	"							
Endrin Aldehyde	ND		1.82	"	"							
Endrin ketone	ND		1.82	"	"							
Heptachlor	ND		1.82	"	"							
Heptachlor epoxide	ND		1.82	"	"							
Methoxychlor	ND		5.45	"	"							
Chlordane (Technical)	ND		54.5	"	"							
Toxaphene (Total)	ND		54.5	"	"							
Surr: 2,4,5,6-TCMX (Surr) Decachlorobiphenyl (Surr)		R	ecovery: 85 % 98 %	Limits: 42-1 65-1	29 % 51 %	Dilt	ution: 1x					
LCS (5080223-BS1)				Prepa	ared: 08/0	07/15 07:20	Analyzed:	08/11/15 11	:54			C-05
EPA 8081B												
Aldrin	38.5		2.00	ug/kg wet	1	50.0		77	45-136%			
alpha-BHC	42.1		2.00	"	"	"		84	45-137%			
beta-BHC	41.9		2.00	"	"	"		84	50-136%			
delta-BHC	42.4		2.00	"	"	"		85	47-139%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	nlorine Pe	sticides	by EPA 80	081B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080223 - EPA 3546	6/3640A (GF	PC)					Soi	<u> </u>				
LCS (5080223-BS1)				Pre	pared: 08/	07/15 07:20	Analyzed:	08/11/15 1	1:54			C-05
gamma-BHC (Lindane)	42.4		2.00	"	"	"		85	49-135%			
cis-Chlordane	40.4		2.00	"	"	"		81	54-133%			
trans-Chlordane	40.7		2.00	"	"	"		81	53-135%			
4,4'-DDD	45.2		2.00	"	"	"		90	56-139%			
4,4'-DDE	40.8		2.00	"	"	"		82	56-134%			
4,4'-DDT	49.8		2.00	"	"	"		100	50-141%			
Dieldrin	42.7		2.00	"	"	"		85	56-136%			
Endosulfan I	41.9		2.00	"	"	"		84	52-132%			
Endosulfan II	43.4		2.00	"	"	"		87	53-134%			
Endosulfan sulfate	44.2		2.00	"	"	"		88	55-136%			
Endrin	48.9		2.00	"	"	"		98	56-140%			
Endrin Aldehyde	41.3		2.00	"	"	"		83	35-137%			
Endrin ketone	47.1		2.00	"	"	"		94	55-136%			Q-41
Heptachlor	41.8		2.00	"	"	"		84	47-136%			
Heptachlor epoxide	42.1		2.00	"	"	"		84	52-136%			
Methoxychlor	50.9		6.00	"	"	"		102	52-143%			
Surr: 2,4,5,6-TCMX (Surr)		Re	ecovery: 73 %		129 %	Dili	ution: 1x					
Decachlorobiphenyl (Surr)			93 %	65-	151 %		"					
Duplicate (5080223-DUP1)				Pre	pared: 08/	07/15 07:20	Analyzed:	08/11/15 1	2:31			C-05
QC Source Sample: S+H-PortMix-	Tual (A5H014	2-01RE1)										
EPA 8081B												
Aldrin	ND		2.26	ug/kg dry	1		ND				30%	
alpha-BHC	ND		2.26	"	"		ND				30%	
beta-BHC	ND		2.26	"	"		ND				30%	
delta-BHC	ND		2.26	"	"		ND				30%	
gamma-BHC (Lindane)	ND		2.26	"	"		ND				30%	
cis-Chlordane	ND		2.26	"	"		ND				30%	
trans-Chlordane	ND		2.26	"	"		ND				30%	
4,4'-DDD	ND		2.26	"	"		ND				30%	
4,4'-DDE	ND		2.26	"	"		ND				30%	
4,4'-DDT	ND		2.26	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 5080223 - EPA 354	6/3640A (GF	PC)					Soi					
Duplicate (5080223-DUP1)				Prepa	ared: 08/	07/15 07:20	Analyzed:	08/11/15	12:31			C-0:
QC Source Sample: S+H-PortMi	x-Tual (A5H014	2-01RE1)										
Dieldrin	ND		2.26	"	"		ND				30%	
Endosulfan I	ND		2.26	"	"		ND				30%	
Endosulfan II	ND		2.26	"	"		ND				30%	
Endosulfan sulfate	ND		2.26	"	"		ND				30%	
Endrin	ND		2.26	"	"		ND				30%	
Endrin Aldehyde	ND		2.26	"	"		ND				30%	
Endrin ketone	ND		2.26	"	"		ND				30%	
Heptachlor	ND		2.26	"	"		ND				30%	
Heptachlor epoxide	ND		2.26	"	"		ND				30%	
Methoxychlor	ND		6.79	"	"		ND				30%	
Chlordane (Technical)	ND		67.9	"	"		ND				30%	
Toxaphene (Total)	ND		67.9	"	"		ND				30%	
Surr: 2,4,5,6-TCMX (Surr)		Red	covery: 72 %	Limits: 42-1	29 %	Dilı	ution: 1x					
Decachlorobiphenyl (Surr)			106 %	65-1.	51 %		"					
Matrix Spike (5080223-MS1)				Prepa	ared: 08/	07/15 07:20	Analyzed:	08/11/15	12:50			C-05
QC Source Sample: S+H-PortMi	x-Tual (A5H014	2-01RE1)										
EPA 8081B												
Aldrin	54.6		2.27	ug/kg dry	1	56.7	ND	96	45-136%			
alpha-BHC	56.4		2.27	"	"	"	ND	99	45-137%			
beta-BHC	66.7		2.27	"	"	"	ND	118	50-136%			
delta-BHC	68.0		2.27	"	"	"	ND	120	47-139%			
gamma-BHC (Lindane)	60.4		2.27	"	"	"	ND	106	49-135%			
cis-Chlordane	65.4		2.27	"	"	"	ND	115	54-133%			
trans-Chlordane	45.5		2.27	"	"	"	ND	80	53-135%			
4,4'-DDD	76.6		2.27	"	"	"	ND	135	56-139%			
4,4'-DDE	66.9		2.27	"	"	"	ND	118	56-134%			
4,4'-DDT	74.5		2.27	"	"	"	ND	131	50-141%			
Dieldrin	52.3		2.27	"	"	"	ND	92	56-136%			
Endosulfan I	63.5		2.27	"	"	"	ND	112	52-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organocl	nlorine Pes	ticides	by EPA 80)81B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080223 - EPA 3546	/3640A (GI	PC)					Soi	<u> </u>				
Matrix Spike (5080223-MS1)				Prep	ared: 08/	07/15 07:20	Analyzed:	08/11/15 1	2:50			C-05
QC Source Sample: S+H-PortMix-T	Tual (A5H014	2-01RE1)										
Endosulfan II	68.9		2.27	ug/kg dry	"	"	ND	121	53-134%			
Endosulfan sulfate	53.3		2.27	"	"	"	ND	94	55-136%			
Endrin	63.9		2.27	"	"	"	ND	113	56-140%			
Endrin Aldehyde	55.6		2.27	"	"	"	ND	98	35-137%			
Endrin ketone	62.9		2.27	"	"	"	ND	111	55-136%			
Heptachlor	64.2		2.27	"	"	"	ND	113	47-136%			
Heptachlor epoxide	65.9		2.27	"	"	"	ND	116	52-136%			
Methoxychlor	89.9		6.81	"	"	"	ND	158	52-143%			Q-01
Surr: 2,4,5,6-TCMX (Surr)		Re	ecovery: 77 %	Limits: 42-	129 %	Dilı	ution: 1x					
Decachlorobiphenyl (Surr)			115 %	65-1	51 %		"					

Apex Laboratories

Quand by funil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	Semivolatile	Organic Co	mpour	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soil					
Blank (5080209-BLK2)				Prepa	ared: 08/1	0/15 10:21	Analyzed:	08/10/15 13	:51			
EPA 8270D												
Acenaphthene	ND		208	ug/kg wet	1							
Acenaphthylene	ND		208	"	"							
Aniline	ND		208	"	"							
Anthracene	ND		208	"	"							
Azobenzene (1,2-DPH)	ND		208	"	"							
Benz(a)anthracene	ND		208	"	"							
Benzo(a)pyrene	ND		208	"	"							
Benzo(b)fluoranthene	ND		208	"	"							
Benzo(k)fluoranthene	ND		208	"	"							
Benzo(b+k)fluoranthene(s)	ND		417	"	"							
Benzo(g,h,i)perylene	ND		208	"	"							
Benzoic acid	ND		1040	"	"							
Benzyl alcohol	ND		208	"	"							
Bis(2-Chloroethoxy) methane	ND		208	"	"							
Bis(2-Chloroethyl) ether	ND		208	"	"							
Bis(2-Chloroisopropyl) ether	ND		208	"	"							
Bis(2-Ethylhexyl) adipate	ND		208	"	"							
Bis(2-ethylhexyl)phthalate	ND		208	"	"							
4-Bromophenyl phenyl ether	ND		208	"	"							
Butyl benzyl phthalate	ND		208	"	"							
Carbazole	ND		208	"	"							
4-Chloroaniline	ND		208	"	"							
4-Chloro-3-methylphenol	ND		208	"	"							
2-Chloronaphthalene	ND		208	"	"							
2-Chlorophenol	ND		208	"	"							
4-Chlorophenyl phenyl ether	ND		208	"	"							
Chrysene	ND		208	"	"							
Dibenz(a,h)anthracene	ND		208	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soi	l				
Blank (5080209-BLK2)				Pre	pared: 08/	10/15 10:21	Analyzed:	08/10/15 13	:51			
Dibenzofuran	ND		208	"	"							
1,2-Dichlorobenzene	ND		208	"	"							
1,3-Dichlorobenzene	ND		208	"	"							
1,4-Dichlorobenzene	ND		208	"	"							
2,4-Dichlorophenol	ND		208	"	"							
Di-n-butylphthalate	ND		208	"	"							
Diethylphthalate	ND		208	"	"							
Dimethylphthalate	ND		208	"	"							
2,4-Dimethylphenol	ND		208	"	"							
1,2-Dinitrobenzene	ND		208	"	"							
1,3-Dinitrobenzene	ND		208	"	"							
1,4-Dinitrobenzene	ND		208	"	"							
4,6-Dinitro-2-methylphenol	ND		500	"	"							
2,4-Dinitrophenol	ND		208	"	"							
2,4-Dinitrotoluene	ND		208	"	"							
2,6-Dinitrotoluene	ND		208	"	"							
Di-n-octyl phthalate	ND		208	"	"							
Fluoranthene	ND		208	"	"							
Fluorene	ND		208	"	"							
Hexachlorobenzene	ND		208	"	"							
Hexachlorobutadiene	ND		208	"	"							
Hexachlorocyclopentadiene	ND		208	"	"							
Hexachloroethane	ND		208	"	"							
Indeno(1,2,3-cd)pyrene	ND		208	"	"							
Isophorone	ND		208	"	"							
1-Methylnaphthalene	ND		208	"	"							
2-Methylnaphthalene	ND		208	"	"							
2-Methylphenol	ND		208	"	"							
3+4-Methylphenol(s)	ND		208	"	"							
Naphthalene	ND		208	"	"							
2-Nitroaniline	ND		208	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la final

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result		porting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soi	l				
Blank (5080209-BLK2)				Prep	ared: 08/	10/15 10:21	Analyzed:	08/10/15 13	3:51			
3-Nitroaniline	ND		208	ug/kg wet	"							
4-Nitroaniline	ND		208	"	"							
Nitrobenzene	ND		208	"	"							
2-Nitrophenol	ND		208	"	"							
4-Nitrophenol	ND		208	"	"							
N-Nitrosodimethylamine	ND		208	"	"							
N-Nitroso-di-n-propylamin e	ND		208	"	"							
N-Nitrosodiphenylamine	ND		208	"	"							
Pentachlorophenol (PCP)	ND		208	"	"							
Phenanthrene	ND		208	"	"							
Phenol	ND		208	"	"							
Pyrene	ND		208	"	"							
Pyridine	ND		417	"	"							
2,3,4,6-Tetrachlorophenol	ND		208	"	"							
2,3,5,6-Tetrachlorophenol	ND		208	"	"							
1,2,4-Trichlorobenzene	ND		208	"	"							
2,4,5-Trichlorophenol	ND		208	"	"							
2,4,6-Trichlorophenol	ND		208	"	"							
Surr: Nitrobenzene-d5 (Surr) 2-Fluorobiphenyl (Surr) Phenol-d6 (Surr)		Recovery	92 % 84 %		122 % 115 % 122 %	Dilı	ution: Ix " "					
p-Terphenyl-d14 (Surr)			106 %		27 %		"					Q-4
2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr)			88 % 100 %		115 % 132 %		"					Q-4
LCS (5080209-BS2)				Prep	ared: 08/	10/15 10:21	Analyzed:	08/10/15 14	1:30			
EPA 8270D	720		250	Д .		000		0.1	40.12207			
Acenaphthene	729		250	ug/kg wet	1	800			40-122%			
Acenaphthylene	734		250	"	"	"			32-132%			
Aniline	618		250		"			77	7-120%			
Anthracene	765		250	"		"			47-123%			
Azobenzene (1,2-DPH)	761		250	"	"	"		95	39-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soil	l				
LCS (5080209-BS2)				Prep	ared: 08/	10/15 10:21			4:30			
Benz(a)anthracene	750		250	ug/kg wet	"	"		94	49-126%			
Benzo(a)pyrene	779		250	"	"	"		97	45-129%			
Benzo(b)fluoranthene	770		250	"	"	"		96	45-132%			
Benzo(k)fluoranthene	749		250	"	"	"		94	47-132%			
Benzo(b+k)fluoranthene(s)	1540		500	"	"	1600		96	45-132%			
Benzo(g,h,i)perylene	747		250	"	"	800		93	43-134%			
Benzoic acid	ND		1250	"	"	1600		32	5-140%			
Benzyl alcohol	729		250	"	"	800		91	29-122%			
Bis(2-Chloroethoxy) methane	748		250	"	"	"		94	36-121%			
Bis(2-Chloroethyl) ether	709		250	"	"	"		89	31-120%			
Bis(2-Chloroisopropyl) ether	843		250	"	"	"		105	33-131%			Q-41
Bis(2-Ethylhexyl) adipate	725		250	"	"	"		91	60-121%			
Bis(2-ethylhexyl)phthalate	742		250	"	"	"		93	51-133%			
4-Bromophenyl phenyl ether	848		250	"	"	"		106	46-124%			Q-41
Butyl benzyl phthalate	757		250	"	"	"		95	48-132%			
Carbazole	745		250	"	"	"		93	50-122%			
4-Chloroaniline	459		250	"	"	"		57	16-120%			
4-Chloro-3-methylphenol	730		250	"	"	"		91	45-122%			
2-Chloronaphthalene	719		250	"	"	"		90	41-120%			
2-Chlorophenol	735		250	"	"	"		92	34-121%			
4-Chlorophenyl phenyl ether	716		250	"	"	"		89	45-121%			
Chrysene	716		250	"	"	"		90	50-124%			
Dibenz(a,h)anthracene	722		250	"	"	"		90	45-134%			
Dibenzofuran	702		250	"	"	"		88	44-120%			
1,2-Dichlorobenzene	679		250	"	"	"		85	33-120%			
1,3-Dichlorobenzene	686		250	"	"	"		86	30-120%			
1,4-Dichlorobenzene	691		250	"	"	"		86	31-120%			
2,4-Dichlorophenol	749		250	"	"	"		94	40-122%			
Di-n-butylphthalate	818		250	"	"	"		102	51-128%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la finil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest Drive Project Number: [none] Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
						1105411	, UICLC	Limits	KI D	Lillit	110168
						Soil					
			Pre	pared: 08/	10/15 10:21	Analyzed:	08/10/15 1	4:30			
		250	"	"	"		94	50-124%			
742		250	"	"	"		93	48-124%			
842		250	"	"	"		105	30-127%			Q-41
699		250	"	"	"		87	44-120%			
695		250	"	"	"		87	42-127%			
749		250	"	"	"		94	37-132%			
663		600	"	"	"		83	29-132%			
586		250	"	"	"		73	5-137%			
699		250	"	"	"		87	48-126%			
759		250	"	"	"		95	46-124%			
700		250	"	"	"		87	44-140%			
769		250	"	"	"		96	50-127%			
703		250	"	"	"		88	43-125%			
862		250	"	"	"		108	44-122%			
808		250	"	"	"		101	32-123%			
975		250	"	"	"		122	5-140%			Q-41
730		250	"	"	"		91	28-120%			
679		250	"	"	"		85	45-133%			
828		250	"	"	"		104	30-122%			
719		250	"	"	"		90	40-120%			
733		250	"	"	"		92	38-122%			
752		250	"	"	"		94	32-122%			
752		250	"	"	"		94	34-120%			
697			"	"	"		87				
673		250	"	"	"		84				
490		250	"	"	"		61				
635			"	"	"						
785			"	"	"		98				
			"	"	"						
			"	"	"						
			"	,,	"					-	Q-41
	599 595 749 563 586 599 759 700 769 703 862 808 975 730 579 828 719 733 752 752 757 569 673 490 633	842 5699 695 749 5663 5886 5999 7759 769 769 730 679 828 7730 7730 7730 7752 7752 7673 6673 490 785 748 646	842 250 5699 250 695 250 749 250 5663 250 586 250 599 250 759 250 769 250 769 250 862 250 873 250 873 250 879 250 879 250 879 250 879 250 879 250 879 250 879 250 879 250 872 250 752 250 752 250 667 250 673 250 7685 <t< td=""><td>742 250 " 842 250 " 599 250 " 595 250 " 663 250 " 586 250 " 5899 250 " 759 250 " 769 250 " 769 250 " 862 250 " 7703 250 " 7730 250 " 779 250 " 779 250 " 779 250 " 7752 250 " 7752 250 " 7673 250 " 7697 250 " 7652 250 " 7697 250</td><td>3842 250 " " 599 250 " " 595 250 " " 663 250 " " 586 250 " " 5899 250 " " 759 250 " " 769 250 " " 769 250 " " 703 250 " " 862 250 " " 773 250 " " 730 250 " " 730 250 " " 733 250 " " 752 250 " " 752 250 " " 752 250 " " 7697 </td><td>342 250 " " " 599 250 " " " " 595 250 "</td></t<> <td>742 250 " " " <td>3842 250 " " 105 5699 250 " " 87 699 250 " " 87 749 250 " " 94 363 600 " " 83 586 250 " " 87 759 250 " " 87 769 250 " " 87 769 250 " " 87 769 250 " " 87 769 250 " " 88 862 250 " " 88 8808 250 " " 108 8775 250 " " "</td><td> 1.00</td><td> 142</td><td> 142</td></td>	742 250 " 842 250 " 599 250 " 595 250 " 663 250 " 586 250 " 5899 250 " 759 250 " 769 250 " 769 250 " 862 250 " 7703 250 " 7730 250 " 779 250 " 779 250 " 779 250 " 7752 250 " 7752 250 " 7673 250 " 7697 250 " 7652 250 " 7697 250	3842 250 " " 599 250 " " 595 250 " " 663 250 " " 586 250 " " 5899 250 " " 759 250 " " 769 250 " " 769 250 " " 703 250 " " 862 250 " " 773 250 " " 730 250 " " 730 250 " " 733 250 " " 752 250 " " 752 250 " " 752 250 " " 7697	342 250 " " " 599 250 " " " " 595 250 "	742 250 " " " <td>3842 250 " " 105 5699 250 " " 87 699 250 " " 87 749 250 " " 94 363 600 " " 83 586 250 " " 87 759 250 " " 87 769 250 " " 87 769 250 " " 87 769 250 " " 87 769 250 " " 88 862 250 " " 88 8808 250 " " 108 8775 250 " " "</td> <td> 1.00</td> <td> 142</td> <td> 142</td>	3842 250 " " 105 5699 250 " " 87 699 250 " " 87 749 250 " " 94 363 600 " " 83 586 250 " " 87 759 250 " " 87 769 250 " " 87 769 250 " " 87 769 250 " " 87 769 250 " " 88 862 250 " " 88 8808 250 " " 108 8775 250 " " "	1.00	142	142

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la final

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest Drive Project Number: [none] Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	emivolatile	Organic Co	mpou	nds by EPA	4 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soi	l .				
LCS (5080209-BS2)				Prepa	red: 08/	10/15 10:21	Analyzed:	08/10/15 14	1:30			
N-Nitroso-di-n-propylamin	840		250	ug/kg wet	"	"		105	36-120%			Q-41
e N-Nitrosodiphenylamine	714		250	"	"	"		89	38-127%			
Pentachlorophenol (PCP)	723		250	"	"	"		90	25-133%			
Phenanthrene	716		250	"	"	"			50-121%			
Phenol	800		250	"	"	"		100	34-120%			
Pyrene	736		250	"	"	"		92	47-127%			
Pyridine	698		500	"	"	"		87	5-120%			
2,3,4,6-Tetrachlorophenol	683		250	"	"	"		85	44-125%			
2,3,5,6-Tetrachlorophenol	668		250	"	"	"		84	40-120%			
1,2,4-Trichlorobenzene	694		250	"	"	"		87	34-120%			
2,4,5-Trichlorophenol	735		250	"	"	"		92	41-124%			
2,4,6-Trichlorophenol	730		250	"	"	"		91	39-126%			
Surr: Nitrobenzene-d5 (Surr)		Rec	covery: 95 %	Limits: 37-12	22 %	Dilu	tion: 1x					
2-Fluorobiphenyl (Surr)			90 %	44-11	5 %		"					
Phenol-d6 (Surr)			92 %	33-12			"					
p-Terphenyl-d14 (Surr)			111 %	54-12			"					Q-4
2-Fluorophenol (Surr)			99 %	35-11			"					_
2,4,6-Tribromophenol (Surr)			112 %	39-13	32 %		"					Q-4
Duplicate (5080209-DUP1)				Prepa	red: 08/	10/15 10:21	Analyzed:	08/10/15 17	7:03			
QC Source Sample: S+H-PortMix-T	Tual (A5H014	2-01)										
EPA 8270D												
Acenaphthene	ND		265	ug/kg dry	1		ND				30%	
Acenaphthylene	ND		265	"	"		ND				30%	
Aniline	ND		265	"	"		ND				30%	
Anthracene	ND		265	"	"		ND				30%	
Azobenzene (1,2-DPH)	ND		265	"	"		ND				30%	
Benz(a)anthracene	ND		265	"	"		ND				30%	
Benzo(a)pyrene	ND		265	"	"		ND				30%	
Benzo(b)fluoranthene	ND		265	"	"		ND				30%	
Benzo(k)fluoranthene	ND		265	"	"		ND				30%	
Benzo(b+k)fluoranthene(s)	ND		531	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soi	l				
Duplicate (5080209-DUP1)				Pre	pared: 08/	10/15 10:21	Analyzed:	08/10/15 17	:03			
QC Source Sample: S+H-PortMix-To	ual (A5H014	2-01)										
Benzo(g,h,i)perylene	ND		265	"	"		ND				30%	
Benzoic acid	ND		1330	"	"		ND				30%	
Benzyl alcohol	ND		265	"	"		ND				30%	
Bis(2-Chloroethoxy) methane	ND		265	"	"		ND				30%	
Bis(2-Chloroethyl) ether	ND		265	"	"		ND				30%	
Bis(2-Chloroisopropyl) ether	ND		265	"	"		ND				30%	
Bis(2-Ethylhexyl) adipate	ND		265	"	"		ND				30%	
Bis(2-ethylhexyl)phthalate	ND		265	"	"		ND				30%	
4-Bromophenyl phenyl ether	ND		265	"	"		ND				30%	
Butyl benzyl phthalate	ND		265	"	"		ND				30%	
Carbazole	ND		265	"	"		ND				30%	
4-Chloroaniline	ND		265	"	"		ND				30%	
4-Chloro-3-methylphenol	ND		265	"	"		ND				30%	
2-Chloronaphthalene	ND		265	"	"		ND				30%	
2-Chlorophenol	ND		265	"	"		ND				30%	
4-Chlorophenyl phenyl	ND		265	"	"		ND				30%	
ether Chrysene	ND		265	"	"		ND				30%	
Dibenz(a,h)anthracene	ND		265	"	"		ND				30%	
Dibenzofuran	ND		265	"	"		ND				30%	
1,2-Dichlorobenzene	ND		265	"	"		ND				30%	
1,3-Dichlorobenzene	ND		265	"	"		ND				30%	
1,4-Dichlorobenzene	ND		265	"	"		ND				30%	
2,4-Dichlorophenol	ND		265	"	"		ND				30%	
Di-n-butylphthalate	ND		265	"	"		ND				30%	
Diethylphthalate	ND		265	"	"		ND				30%	
Dimethylphthalate	ND		265	"	"		ND				30%	
2,4-Dimethylphenol	ND		265	"	"		ND				30%	
1,2-Dinitrobenzene	ND		265	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soil					
Duplicate (5080209-DUP1)				Pre	pared: 08/	10/15 10:21	Analyzed:	08/10/15 17	:03			
QC Source Sample: S+H-PortMix-T	Tual (A5H014	2-01)										
1,3-Dinitrobenzene	ND		265	"	"		ND				30%	
1,4-Dinitrobenzene	ND		265	"	"		ND				30%	
4,6-Dinitro-2-methylphenol	ND		637	"	"		ND				30%	
2,4-Dinitrophenol	ND		265	"	"		ND				30%	
2,4-Dinitrotoluene	ND		265	"	"		ND				30%	
2,6-Dinitrotoluene	ND		265	"	"		ND				30%	
Di-n-octyl phthalate	ND		265	"	"		ND				30%	
Fluoranthene	ND		265	"	"		ND				30%	
Fluorene	ND		265	"	"		ND				30%	
Hexachlorobenzene	ND		265	"	"		ND				30%	
Hexachlorobutadiene	ND		265	"	"		ND				30%	
Hexachlorocyclopentadiene	ND		265	"	"		ND				30%	
Hexachloroethane	ND		265	"	"		ND				30%	
Indeno(1,2,3-cd)pyrene	ND		265	"	"		ND				30%	
Isophorone	ND		265	"	"		ND				30%	
1-Methylnaphthalene	ND		265	"	"		ND				30%	
2-Methylnaphthalene	ND		265	"	"		ND				30%	
2-Methylphenol	ND		265	"	"		ND				30%	
3+4-Methylphenol(s)	ND		265	"	"		ND				30%	
Naphthalene	ND		265	"	"		ND				30%	
2-Nitroaniline	ND		265	"	"		ND				30%	
3-Nitroaniline	ND		265	"	"		ND				30%	
4-Nitroaniline	ND		265	"	"		ND				30%	
Nitrobenzene	ND		265	"	"		ND				30%	
2-Nitrophenol	ND		265	"	"		ND				30%	
4-Nitrophenol	ND		265	"	"		ND				30%	
N-Nitrosodimethylamine	ND		265	"	"		ND				30%	
N-Nitroso-di-n-propylamin	ND		265	"	"		ND				30%	
e N-Nitrosodiphenylamine	ND		265	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC		RPD	Limit	Notes
Batch 5080209 - EPA 3546							Soi					
Duplicate (5080209-DUP1)				Prepa	red: 08/	10/15 10:21	Analyzed:	08/10/15 17	7:03			
QC Source Sample: S+H-PortMix-T	ual (A5H014	2-01)										
Pentachlorophenol (PCP)	ND		265	ug/kg dry	"		ND				30%	
Phenanthrene	ND		265	"	**		ND				30%	
Phenol	ND		265	"	"		ND				30%	
Pyrene	ND		265	"	"		ND				30%	
Pyridine	ND		531	"	"		ND				30%	
2,3,4,6-Tetrachlorophenol	ND		265	"	"		ND				30%	
2,3,5,6-Tetrachlorophenol	ND		265	"	**		ND				30%	
1,2,4-Trichlorobenzene	ND		265	"	"		ND				30%	
2,4,5-Trichlorophenol	ND		265	"	"		ND				30%	
2,4,6-Trichlorophenol	ND		265	"	"		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 96 %	Limits: 37-12	22 %	Dilı	ution: Ix					
2-Fluorobiphenyl (Surr)			86 %	44-11	5 %		"					
Phenol-d6 (Surr)			82 %	33-12	22 %		"					
p-Terphenyl-d14 (Surr)			98 %	54-12	27 %		"					Q-4
2-Fluorophenol (Surr)			84 %	35-11			"					
2,4,6-Tribromophenol (Surr)			130 %	39-13	32 %		"					Q-4
Matrix Spike (5080209-MS1)				Prepa	red: 08/	10/15 10:21	Analyzed:	08/10/15 17	7:42			
QC Source Sample: S+H-PortMix-T	ual (A5H014	2-01)										
EPA 8270D												
Acenaphthene	704		265	ug/kg dry	1	849	ND	83	40-122%			
Acenaphthylene	716		265	"	"	"	ND	84	32-132%			
Aniline	ND		265	"	"	"	ND	8	7-120%			
Anthracene	761		265	"	"	"	ND	90	47-123%			
Azobenzene (1,2-DPH)	790		265	"	"	"	ND	93	39-125%			
Benz(a)anthracene	718		265	"	"	"	ND	85	49-126%			
Benzo(a)pyrene	768		265	"	"	"	ND	90	45-129%			
Benzo(b)fluoranthene	737		265	"	"	"	ND	87	45-132%			
Benzo(k)fluoranthene	722		265	"	"	"	ND	85	47-132%			
Benzo(b+k)fluoranthene(s)	1470		531	"	"	1700	ND	86	45-132%			
Benzo(g,h,i)perylene	717		265	,,	,,	849	ND		43-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel la famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	mpou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soi	Į				
Matrix Spike (5080209-MS1)				Prepa	ared: 08/	10/15 10:21	Analyzed:	08/10/15	17:42			
QC Source Sample: S+H-PortMix-To	ual (A5H014	12-01)										
Benzoic acid	ND		1330	ug/kg dry	"	1700	ND	64	5-140%			
Benzyl alcohol	788		265	"	"	849	ND	93	29-122%			
Bis(2-Chloroethoxy) methane	690		265	"	"	"	ND	81	36-121%			
Bis(2-Chloroethyl) ether	1240		265	"	"	"	ND	146	31-120%			Q-01
Bis(2-Chloroisopropyl) ether	796		265	"	"	"	ND	94	33-131%			Q-41
Bis(2-Ethylhexyl) adipate	763		265	"	"	"	ND	90	60-121%			
Bis(2-ethylhexyl)phthalate	844		265	"	"	"	ND	99	51-133%			
4-Bromophenyl phenyl ether	843		265	"	"	"	ND	99	46-124%			Q-41
Butyl benzyl phthalate	773		265	"	"	"	ND	91	48-132%			
Carbazole	710		265	"	"	"	ND	84	50-122%			
4-Chloroaniline	ND		265	"	"	"	ND	25	16-120%			
4-Chloro-3-methylphenol	785		265	"	"	"	ND	92	45-122%			
2-Chloronaphthalene	707		265	"	"	"	ND	83	41-120%			
2-Chlorophenol	737		265	"	"	"	ND	87	34-121%			
4-Chlorophenyl phenyl ether	710		265	"	"	"	ND	84	45-121%			
Chrysene	710		265	"	"	"	ND	84	50-124%			
Dibenz(a,h)anthracene	739		265	"	"	"	ND	87	45-134%			
Dibenzofuran	690		265	"	"	"	ND	81	44-120%			
1,2-Dichlorobenzene	619		265	"	"	"	ND	73	33-120%			
1,3-Dichlorobenzene	606		265	"	"	"	ND	71	30-120%			
1,4-Dichlorobenzene	616		265	"	"	"	ND	72	31-120%			
2,4-Dichlorophenol	790		265	"	"	"	ND	93	40-122%			
Di-n-butylphthalate	808		265	"	"	"	ND	95	51-128%			
Diethylphthalate	761		265	"	"	"	ND	90	50-124%			
Dimethylphthalate	746		265	"	"	"	ND	88	48-124%			
2,4-Dimethylphenol	837		265	"	"	"	ND	99	30-127%			Q-41
1,2-Dinitrobenzene	703		265	"	"	"	ND	83	44-120%			
1,3-Dinitrobenzene	725		265	"	"	"	ND	85	42-127%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546	i						Soi	I				
Matrix Spike (5080209-MS1)				Pre	pared: 08/	10/15 10:21	Analyzed:	08/10/15 1	7:42			
QC Source Sample: S+H-PortMix-	Tual (A5H014	2-01)										
1,4-Dinitrobenzene	742		265	"	"	"	ND	87	37-132%			
4,6-Dinitro-2-methylphenol	ND		637	"	"	"	ND	74	29-132%			
2,4-Dinitrophenol	397		265	"	"	"	ND	47	5-137%			
2,4-Dinitrotoluene	734		265	"	"	"	ND	86	48-126%			
2,6-Dinitrotoluene	765		265	"	"	"	ND	90	46-124%			
Di-n-octyl phthalate	786		265	"	"	"	ND	93	44-140%			
Fluoranthene	735		265	"	"	"	ND	86	50-127%			
Fluorene	699		265	"	"	"	ND	82	43-125%			
Hexachlorobenzene	806		265	"	"	"	ND	95	44-122%			
Hexachlorobutadiene	740		265	"	"	"	ND	87	32-123%			
Hexachlorocyclopentadiene	ND		265	"	"	"	ND	21	5-140%			Q-41
Hexachloroethane	521		265	"	"	"	ND	61	28-120%			
Indeno(1,2,3-cd)pyrene	659		265	"	"	"	ND	78	45-133%			
Isophorone	802		265	"	"	"	ND	94	30-122%			
1-Methylnaphthalene	685		265	"	"	"	ND	81	40-120%			
2-Methylnaphthalene	724		265	"	"	"	ND	85	38-122%			
2-Methylphenol	807		265	"	"	"	ND	95	32-122%			
3+4-Methylphenol(s)	837		265	"	"	"	ND	99	34-120%			
Naphthalene	662		265	"	"	"	ND	78	35-123%			
2-Nitroaniline	718		265	"	"	"	ND	84	44-127%			
3-Nitroaniline	301		265	"	"	"	ND	35	33-120%			
4-Nitroaniline	398		265	"	"	"	ND	47	35-120%			
Nitrobenzene	780		265	"	"	"	ND	92	34-122%			
2-Nitrophenol	771		265	"	"	"	ND	91	36-123%			
4-Nitrophenol	699		265	"	"	"	ND	82	30-132%			
N-Nitrosodimethylamine	760		265	"	"	"	ND	89	23-120%			Q-41
N-Nitroso-di-n-propylamin	839		265	"	"	"	ND	99	36-120%			Q-41
N-Nitrosodiphenylamine	654		265	"	"	"	ND	77	38-127%			
Pentachlorophenol (PCP)	850		265	"	"	"	ND	100	25-133%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080209 - EPA 3546							Soil					
Matrix Spike (5080209-MS1)				Prep	ared: 08/	10/15 10:21	Analyzed:	08/10/15 1	7:42			
QC Source Sample: S+H-PortMix-T	Tual (A5H014	42-01)										
Phenanthrene	706		265	ug/kg dry	"	"	ND	83	50-121%			
Phenol	756		265	"	"	"	ND	89	34-120%			
Pyrene	712		265	"	"	"	ND	84	47-127%			
Pyridine	554		531	"	"	"	ND	65	5-120%			
2,3,4,6-Tetrachlorophenol	760		265	"	"	"	ND	90	44-125%			
2,3,5,6-Tetrachlorophenol	753		265	"	"	"	ND	89	40-120%			
1,2,4-Trichlorobenzene	633		265	"	"	"	ND	75	34-120%			
2,4,5-Trichlorophenol	793		265	"	"	"	ND	93	41-124%			
2,4,6-Trichlorophenol	788		265	"	"	"	ND	93	39-126%			
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 91 %	Limits: 37-	122 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			81 %	44-1	15 %		"					
Phenol-d6 (Surr)			87 %	33-1	22 %		"					
p-Terphenyl-d14 (Surr)			101 %	54-1	27 %		"					Q-4
2-Fluorophenol (Surr)			86 %	35-1	15 %		"					
2,4,6-Tribromophenol (Surr)			126 %	39-1	32 %		"					Q-4

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080143 - EPA 3051	A						Soi	I				
Blank (5080143-BLK1)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/06/15 19	9:52			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		2.00	"	"							
Manganese	ND		2.00	"	"							
Mercury	ND		0.0800	"	"							
Zinc	ND		4.00	"	"							
Blank (5080143-BLK2)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/07/15 12	2:57			
EPA 6020A												
Copper	ND		4.00	mg/kg wet	10							Q-16
Manganese	ND		1.00	"	"							Q-16
LCS (5080143-BS1)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/06/15 19	9:55			
EPA 6020A												
Arsenic	44.9		1.00	mg/kg wet	10	50.0		90	80-120%			
Cadmium	45.8		0.200	"	"	"		92	"			
Chromium	47.0		1.00	"	"	"		94	"			
Lead	48.4		2.00	"	"	"		97	"			
Manganese	48.3		2.00	"	"	"		97	"			
Mercury	1.05		0.0800	"	"	1.00		105	"			
Zinc	45.0		4.00	"	"	50.0		90	"			
LCS (5080143-BS2)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/07/15 13	3:00			
EPA 6020A												
Copper	50.4		4.00	mg/kg wet	10	50.0		101	80-120%			Q-16
Matrix Spike (5080143-MS2)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/06/15 21	1:17			
QC Source Sample: S+H-PortMix-7	Tual (A5H014	12-01)										
EPA 6020A												
Arsenic	58.3		1.22	mg/kg dry	10	61.2	1.12	93	75-125%			
Cadmium	58.5		0.245	"	"	"	ND	96	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand by funil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080143 - EPA 3051	A						Soi	l				
Matrix Spike (5080143-MS2)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/06/15 21	:17			
QC Source Sample: S+H-PortMix-T	Tual (A5H014	12-01)										
Chromium	70.4		1.22	mg/kg dry	"	"	8.65	101	"			
Lead	66.3		2.45	"	"	"	4.68	101	"			
Manganese	366		2.45	"	"	"	265	165	"			Q-03
Mercury	1.17		0.0979	"	"	1.22	ND	96	"			Q-41
Zinc	94.8		4.89	"	"	61.2	35.3	97	"			
Matrix Spike (5080143-MS3)				Prepa	red: 08/0	06/15 16:02	Analyzed:	08/07/15 13	3:24			
QC Source Sample: S+H-PortMix-7	Tual (A5H014	12-01RE1)										
EPA 6020A												
Copper	83.3		4.89	mg/kg dry	10	61.2	19.1	105	75-125%			Q-16

Apex Laboratories

Quand to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5080163 - To	otal Solids (Dry We	eight)					Soil					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Dunnel la finiel

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

SAMPLE PREPARATION INFORMATION

Polychlorinated Biphenyls by EPA 8082A											
Prep: EPA 3546					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 5080150											
A5H0142-01	Soil	EPA 8082A	08/06/15 12:00	08/07/15 07:18	10.43g/5mL	10g/5mL	0.96				
		C	Organochlorine Pesti	cides by EPA 8081B							
Prep: EPA 3546/36	40A (GPC)				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 5080223											
A5H0142-01RE1	Soil	EPA 8081B	08/06/15 12:00	08/07/15 07:20	10.74g/10mL	10g/5mL	1.86				
		Sem	ivolatile Organic Con	npounds by EPA 8270	D						
Prep: EPA 3546					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 5080209											
A5H0142-01RE2	Soil	EPA 8270D	08/06/15 12:00	08/10/15 10:21	11.35g/5mL	10g/5mL	0.88				
			Total Metals by EF	PA 6020 (ICPMS)							
Prep: EPA 3051A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 5080143											
A5H0142-01	Soil	EPA 6020A	08/06/15 12:00	08/06/15 16:02	0.491g/50mL	0.5g/50mL	1.02				
A5H0142-01RE1	Soil	EPA 6020A	08/06/15 12:00	08/06/15 16:02	0.491g/50mL	0.5g/50mL	1.02				
			Percent Dr	y Weight							
Prep: Total Solids	(Dry Weight	<u> </u>			Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 5080163											
A5H0142-01	Soil	EPA 8000C	08/06/15 12:00	08/07/15 09:57	1N/A/1N/A	1N/A/1N/A	NA				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

Notes and Definitions

Qualifiers:

C-05	Extract has undergone a GPC (Gel-Permeation Chromatography) cleanup per EPA 3640A. Reporting levels may be raised due to dilution
	necessary for cleanup. Sample Final Volume includes the GPC dilution factor, see the Prep page for details.

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz - Oregon Steel

4721 Northwest DriveProject Number: [none]Reported:Bellingham, WA 98226Project Manager: Nathan Cutler09/14/15 17:00

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Quand to finish

Tigard, OR 97223 12232 S.W. Garden Place 503-718-2323 Phone

503-718-0333 Fax

Bellingham, WA 98226 4721 Northwest Drive Strider Construction Co

> Project Manager: Nathan Cutler Project Number: [none]

09/14/15 17:00 Reported: Project:

Evraz - Oregon Steel

Lab# ASH0142

12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333

APEX LABS

Construction Co. Project Mar: Nathan Cutter Project Name: EVRAZ-Oregon Stee! Project #
Vorthwest Dryne, Bellingham, WA 98226 Phone: 360-739-2729 Feb.: 360-380-1834 Email: NATHANCEST VIDE NOORSTRIKTION ANALYSIS REQUEST EPH 747 Mero 8082 PCBs (8083 A) EPH 1613 Growns # OF CONTAINERS 8260 RBDM VOCS * ()1(0) Ho/3 Site Location: RCRA Metals (8) 81808 403 8270 SIM PAHS TCLP Metals (8) NWTPH-HCID NWTPH-Dx NWTPH-Gx Other: 8260 BTEX 8260 VOC 8270 SVOC 1200-COLS LAB ID# MATRIX 000 TTO DATE 1200-Z TIME SAMPLE ID 120) 501 3 special instructions: * Metals 6010 include: arsenic, codmium, chromium, copper; lead, manganese, & zinc (NO) RIKH Normal Turn Around Time (TAT) = 7-10 Business Days YES 3 Day 1 Day 2 Day TAT Requested (circle) Other: Rish-ASAP 4 DAY 5 DAY SAMPLES ARE HELD FOR 30 DAYS RELINQUISHED BY: RELINQUISHED BY: RECEIVED BY: Printed Name

CHAIN OF CUSTODY

Apex Laboratories

Darrell Auvil For Darwin Thomas, Business Development Director

SOIL PARTICLE-SIZE ANALYSIS REPORT

	raz Rivergate Facility – I rtland, OR	.52 •		Strider Construction Co, Inc. 4721 Northwest Drive				F ELD ID	n/a
			Bellingham, W	/A 98226		D/	09/03/1	SAMPLED 5	NMF
MATE	RIAL DATA						03/03/1		111111
	IAL SAMPLED		MATERIAL SOURCE	1		US	SDA SOIL CLASSI		
S&	H Portland Mix		stockpile samp S&H - Tualatii				sandy loam	l	
NOTES			l						
Per	cent gravel indicated inc	ludes organ	ic material retained on t	the No. 10 s	ieve.				
	RATORY TEST DATA								
	ATORY EQUIPMENT	. i Ctii	Ammontos A Doinhout	!!)	I G:A 627	TE	ST PROCEDURE		
	drometer 152H, 1 minute	e in Surring	Apparatus A, Rainnart	"Mary Alin"	Silier 63 /	8	ASTM D42		
ADDII	initial dry mass (g)	= 5452.8	hydrometer sample	mass (g) =	102.07	ľ	LVE DATA - 0		3.4%
as	received moisture content		hygroscopic moisture		7.87%			% sand =	
	liquid limit : plastic limit :		coefficient of curva coefficient of unifor		4.41 81.24			% silt = % clay =	
	plasticity index	= n/a		size, D ₍₁₀₎ =	0.003 mm			, o clay –	5.170
	fineness modulus	= n/a		D ₍₃₀₎ =	0.063 mm		OIEVE OIZE	PERCENT	
				$D_{(60)} =$	0.270 mm		SIEVE SIZE US mm	SIEVE act. interp.	SPECS max min
							6.00" 150.0		
		GRAIN S	SIZE DISTRIBUTION				3.00" 75.0	100.0%	
	4 88 4 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5	# #£ #	# # # # # # # # # # # # # # # # # # #	HYDROMETER	₹		2.50" 63.0 2.00" 50.0	100.0% 100.0%	
10	00% 9-00-000-0-0-0-0	4	<u> </u>		∏ 1	00%	1.75" 45.0 1.50" 37.5	100.0% 100.0%	
	[]	1	 			<u> </u>		100.0%	
,	90%				1 1 3	0% GRAVEL	1.00" 25.0 7/8" 22.4	100.0% 100.0%	
,	80%				1 1 8	0%	3/4" 19.0 5/8" 16.0	100.0% 100.0%	
			$ \cdot $				1/2" 12.5	100.0%	
7	70%		 		7	0%	3/8" 9.50 1/4" 6.30	99.2%	
							#4 4.75 #8 2.36	98.7% 97.0%	
	60%		 			0%	#10 2.00 #16 1.18	96.6% 94.1%	
sing							#20 0.850	92.5%	
Q	50%				- 5	0%	#30 0.600 #40 0.425		
%	[NAND	#50 0 300 #60 0 250		
4	40%				1 4	0% Y		47.8%	
	30%					0%	#100 0.150 #140 0.106		
,						0 /0	#170 0.090 #200 0.075		
:	20%			<u> </u>	1 2	0%	0.074	32.1%	
						SILT	0.050 0.020	19.4%	
	10%		 		1	0%	0.000		
						CLAY	0.001		
	0%	1.00	00 0.100	0.010	0.001	0/	ATE TESTED	TESTED B	ΙΥ
	10 000		article size (mm)	5.010	0.001		09/10/1	5	JJC
	+ sieve	sizes	—O— sieve data —	—O— hydrometer o	data		4-	10-	Z

CRUSHED ROCK

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, August 27, 2015

Terry Rice Columbia West Engineering, Inc. 11917 NE 95th Street Vancouver, WA 98682

RE: Storedahl-Evraz / 1033Q

Enclosed are the results of analyses for work order <u>A5G0531</u>, which was received by the laboratory on 7/20/2015 at 3:15:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

Dumb la prince

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 12:06

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION										
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
LivingstonG-121 ODOT 11/2" E Comp	A5G0531-01	Soil	07/18/15 10:25	07/20/15 15:15						
LivingstonG-121 ODOT 11/2" C Comp	A5G0531-02	Soil	07/18/15 10:58	07/20/15 15:15						
LivingstonG-121 ODOT 11/2" W Comp	A5G0531-03	Soil	07/18/15 11:40	07/20/15 15:15						

Apex Laboratories

Quant by hail

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 12:06

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)												
			Reporting										
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes					
LivingstonG-121 ODOT 11/2" E Comp (A5G0531-01)			Matrix: Soil										
Batch: 5070514													
Copper	100		1.11	mg/kg dry	10	07/22/15 14:53	EPA 6020A	В					
LivingstonG-121 ODOT 11/2"	C Comp (A5G0531	-02)	Matrix: Soil										
Batch: 5070514													
Copper	115		1.09	mg/kg dry	10	07/22/15 14:56	EPA 6020A	В					
LivingstonG-121 ODOT 11/2" W Comp (A5G0531-03)			Matrix: Soil										
Batch: 5070514													
Copper	90.4		1.10	mg/kg dry	10	07/22/15 14:59	EPA 6020A	В					

Apex Laboratories

Quant to famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 12:06

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
LivingstonG-121 ODOT 11/2" E Com	Matrix: Soil	Batch: 5070504									
% Solids	97.2		1.00	% by Weight	1	07/21/15 09:49	EPA 8000C	Q-38			
LivingstonG-121 ODOT 11/2" C Com	Matrix: Soil	Batch: 5070504									
% Solids	96.8		1.00	% by Weight	1	07/21/15 09:49	EPA 8000C	Q-38			
LivingstonG-121 ODOT 11/2" W Comp (A5G0531-03)			Matrix: Soil	Batch: 5070504							
% Solids	97.3		1.00	% by Weight	1	07/21/15 09:49	EPA 8000C	Q-38			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 12:06

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits		RPD Limit	Notes
Batch 5070514 - EPA 3051/	A						Soi	il				
Blank (5070514-BLK2)				Prepa	ared: 07/	20/15 15:51	Analyzed:	07/22/15	21:09			
EPA 6020A Copper	1.38		1.00	mg/kg wet	10							B, Q-16
LCS (5070514-BS1)				Prepa	ared: 07/	20/15 15:51	Analyzed:	07/22/15	13:59			
EPA 6020A Copper	46.5		1.00	mg/kg wet	10	50.0		93	80-120%			В
Matrix Spike (5070514-MS2)				Prepa	ared: 07/	20/15 15:51	Analyzed:	07/22/15	15:02			
QC Source Sample: LivingstonG-12 EPA 6020A	21 ODOT 11/2	2" W Comp	(A5G0531-03)									
Copper	168		1.06	mg/kg dry	10	52.8	90.4	147	75-125%			B, Q-03

Apex Laboratories

Quant by hail

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 12:06

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070504 - Total Solids (Dry Weight)							Soil	l				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Quant la famil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 12:06

SAMPLE PREPARATION INFORMATION

			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5070514							
A5G0531-01	Soil	EPA 6020A	07/18/15 10:25	07/20/15 15:51	0.465 g/50 mL	0.5g/50mL	1.08
A5G0531-02	Soil	EPA 6020A	07/18/15 10:58	07/20/15 15:51	0.475 g/50 mL	0.5g/50mL	1.05
A5G0531-03	Soil	EPA 6020A	07/18/15 11:40	07/20/15 15:51	0.466 g/50 mL	0.5 g/50 mL	1.07

	Percent Dry Weight													
Prep: Total Solids	(Dry Weight	1)			Sample	Default	RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor							
Batch: 5070504														
A5G0531-01	Soil	EPA 8000C	07/18/15 10:25	07/20/15 17:04	1N/A/1N/A	1N/A/1N/A	NA							
A5G0531-02	Soil	EPA 8000C	07/18/15 10:58	07/20/15 17:04	1N/A/1N/A	1N/A/1N/A	NA							
A5G0531-03	Soil	EPA 8000C	07/18/15 11:40	07/20/15 17:04	1N/A/1N/A	1N/A/1N/A	NA							

Apex Laboratories

Quand by hail

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 7 of 9

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 12:06

Notes and Definitions

Qualifiers:

B Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)

Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.

Q-16 Reanalysis of an original Batch QC sample.

Q-38 Oven outside of control limits during drying step.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch OC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 8 of 9

Columbia West Engineering, Inc. Vancouver, WA 98682 11917 NE 95th Street

Project Number: 1033Q

Project Manager: Terry Rice

Reported: 08/27/15 12:06

Project: Storedahl-Evraz

503-718-0333 Fax

APEX LABS		CHAIN OF	CUSTODY	Lab#_ 4560531	coclr_(_
12232 S.W. Garden Place, Tigard, OR 97223 Ph:	503-718-2323 Fax:	503-718-0333		•	
company: Wolumba West Engr	Project Mgr:	Terry Rice	Project Name: Store	tahl-Eraz Project#	0250
Address: 11917 NE 95=St Vac	ouver, WA	98% Phone:	360-823-29 DFax: 3	.co-823-290/Email:	
Sampled by: Terry Rice				LYSIS REQUEST	
Site Location: OR W79 Other:		# OF CONTAINERS NWTPH-HCID NWTPH-Dx NWTPH-Gx 8269 VOC 8260 REBDM VOCs	8270 SVOC 8270 SVOC 8270 SIM PAHS 8082 PCBs 600 TTO RCRA Menh (8)	TCLP Metals (8) Al. Sh. As. Ba. Be. Cd. Ca. Cr. Co. Co. Sh. Sh. Be. Rb. B. Ma. Ma. Xue, Ni. R. St. Ag. Na. Tl. V. Zn. TTOTAL DISS TCLP 1200-COLS	
	345 1025 Sil			X	
Livingstong-121000T12"Clongs	ld:58 ()			×	
LMM99476-121 000112 WCOM	(140 1	1		×	
TAT Requested (circle) 4 DAY	2 Day 3 D 5 DAY Off	NO Day her:	Results by 61 E 6000, Comp, t	on tres 7-21-15 W comp die 5 point C West Pkase 5 RECEIVED BY: Other	Cu Lapper-Total
SAMPLES ARE HELI RELINQUISHED BY:			East center 1	west Akases	Store Sample Par
Stending Tenz Pice Date: 1/20/11	Signature:			RECEIVED BY: Oho	b analysis
rinsed Name: Temp Rite Time: 15:18	Printed Name LS	142007/ Time: 1515	Printed Name:	Time: Printed Name:	Time:
Company: CME	Company: April	٤	Company:	Company:	

Apex Laboratories

Darrell Auvil For Darwin Thomas, Business Development Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

			ע ע	VURN	<u>Эг</u>	IEE I		R AG	JK	EG	AI				ᄕ	Eng	lish (E)			
PROJECT N	AME (S	SECTION)				-	EVR	RAZ									CON	TRACT	_{МОМ})33(
CONTRACTO	OR OR		Sto	redahl	ж. s	one			PROJ	ECT M	ANAGI	ΞR	_				BID	ITEM N	JMBEF	₹
SOURCE NA	ME	J.L.	Oil	neuaiii	<u> </u>	0113			SOUR	CE NU	MBER						MAT	ERIAL S	SIZE	
TEST NO.	Liv	ingston	Мо	untain (Qua	rry (G12						WA	-06-0			SED IN		11	/2"-	0
S15-4	62	7/10/20	- 1	13:00)	SAMPLEDA	'	belt	stre	am				ľ	DE O		gregate	e bas	е	
SIEVE	SI	PECS.				SIE	VE	ANALY	SIS	A/	SH	то т	Γ27/1	1					F۱	1
SIZE	L	IMITS	М	ASS 1	Ν	IASS 2	М	ASS 3	M	IASS	4	тс	TAL N	IASS	%	RET	% PASS	8	CUMULA % RETA	
															_			╄		
-															-			+		
2		100		0.0		0.0		0.0		0.0			0.0			0.0	100	1		
1 1/2"	9	5-100		0.0		0.0		0.0		0.0			0.0		+	0.0	100			
1" 3/4"		-		04.2		365.5		27.3		0.0			2097		+-	3.2	87 65	+		
1/2"		55-75		349.3 505.9		334.9 443.6		362.4 146.0		0.0 5.7			3546 1401		-	22.3 8.8	56	+-		
3/8"				31.0		385.0		36.8		60.8		-	1213		-	7.6	48	+		
1/4"	-	35-50		780.6		588.1		94.5		157.			2121			3.3	35	+		
#4	<u> </u>	-		889.3		236.5		240.5		75.8		<u> </u>	942.			5.9	29	+		
#10		-		39.7		439.6		140.0		129.			1749		+	11.0	18	T		
DANI			4	070.5		70.0				170			2005	4	+	10.0		-		
PAN B = I	NIT	J IAL DRY		278.5 SS:		579.6 28.4		MASS AF		170.: SIEV		<u> </u>	2865 1593			18.0				
SIEVE		PECS.				метно							ED PIE	$\overline{}$	┢		SE 1	176	<u> </u>	
SIZE		IMITS		FRAC ASS (F)	QUE	STIONABLE ASS (Q)	NC	N FRAC ASS (N)	INDIV	IDUAL		ST	ELON MAS			1	2		3	Sample
+ 1/4"		-100%		283.3	1017	0.0		20.1		9%	1017	100	IVIAG	Ť	H	5.9	5.8		.0	Clay
							,								Г	3.4	3.4	3	.4	Sand
																58	59	5	57	S.E.
															1	VG.	58	SF	EC	30
															P	AN TA	ARE		17	48.4
															W	ЕТ МА	SS & PA	N	18	194.0
															DF	RY MA	SS & PA	N	17	676.8
											L				AFT	ER WASH	DRY MASS 8	PAN	17	676.8
C = AFTER V	WASH	DRY MASS &	PAN -	PAN	B = D	RY MASS & F	AN - P	AN		X	DR	Υ	\Box	ΝET		WAQ	TC AASHT	o T-27	7/T11	
A = WET MA	SS & F	PAN - PAN			RI	ESULT	S	SPEC	Х	Rou	nd		Squar	е	Re	ctangle	12" d	iame	ter	Size
		Method	1	T 335					R											
Wood V	Vast	e		TM225					E											
Cleanne	essV	/alue		TM 227					M											
Flat & Elongated TM 229								A R												
Fineness Modulus T 27/T11								ĸ												
MOISTUF	RE %	={(A-B) / B	} X 1	00		3.2%			s											
		%={(C-D) /	C} X	100		0.0%		% max												
(№10 / 1/4				\ (FE)		51%	-	10-60	 	L	ID A S	05								
						INDEPEND COMPANY N		MOSE	KAN	UE	Is	IGNATI	JRĘ		7 -			DATE		
Jared J. Comastro #44232						0.1	una la	- 14	11	-			4	_0	<u>_</u>	~	-			
	J	ared J. (omر	astro #4	1423	52		Colu	umb	ıa W	est	Eng	.						//1:	5/2015

HYDROMULCH

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, October 15, 2015

Nathan Cutler Strider Construction Co 4721 Northwest Drive Bellingham, WA 98226

RE: Evraz OR Steel / Evraz OR Steel

Enclosed are the results of analyses for work order <u>A5J0281</u>, which was received by the laboratory on 10/9/2015 at 3:57:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alumel la finiel

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction CoProject:EvrazOR Steel4721 Northwest DriveProject Number:EvrazOR SteelBellingham, WA 98226Project Manager:Nathan Cutler

Reported: 10/15/15 14:59

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION												
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received								
MULCH-HM-1	A5J0281-01	Solid	10/08/15 09:35	10/09/15 15:57								
TACK-HM-1	A5J0281-02	Solid	10/08/15 09:45	10/09/15 15:57								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund to buil

Bellingham, WA 98226

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Reported:

10/15/15 14:59

Strider Construction CoProject:EvrazOR Steel4721 Northwest DriveProject Number:EvrazOR Steel

Project Number: Evraz OR Steel
Project Manager: Nathan Cutler

ANALYTICAL SAMPLE RESULTS

		Polyc	hlorinated Bip	henyls by Ef	PA 8082A			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MULCH-HM-1 (A5J0281-01)			Matrix: Solid	l B	atch: 51003	30		C-0
Aroclor 1016	ND		48.1	ug/kg	1	10/13/15 13:30	EPA 8082A	
Aroclor 1221	ND		48.1	"	"	"	"	
Aroclor 1232	ND		48.1	"	"	"	"	
Aroclor 1242	ND		48.1	"	"	"	"	
Aroclor 1248	ND		48.1	"	"	"	"	
Aroclor 1254	ND		48.1	"	"	"	"	
Aroclor 1260	ND		48.1	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		Re	ecovery: 102 %	Limits: 72-126 %	"	"	"	Q-41
TACK-HM-1 (A5J0281-02RE1)			Matrix: Solid	І В	atch: 51003	30		C-0
Aroclor 1016	ND		9.88	ug/kg	1	10/14/15 08:36	EPA 8082A	
Aroclor 1221	ND		9.88	"	"	"	"	
Aroclor 1232	ND		9.88	"	"	"	"	
Aroclor 1242	ND		9.88	"	"	"	"	
Aroclor 1248	ND		9.88	"	"	"	"	
Aroclor 1254	ND		9.88	"	"	"	"	
Aroclor 1260	ND		9.88	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 96 %	Limits: 72-126 %	"	"	"	Q-41

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 3 of 7

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/15/15 14:59

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	ohenyls	by EPA 80)82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100330 - EPA 3546							Sol	id				
Blank (5100330-BLK1)				Pre	pared: 10/	12/15 13:27	Analyzed:	10/13/15 11	:05			C-0
EPA 8082A												
Aroclor 1016	ND		9.09	ug/kg	1							
Aroclor 1221	ND		9.09	"	"							
Aroclor 1232	ND		9.09	"	"							
Aroclor 1242	ND		9.09	"	"							
Aroclor 1248	ND		9.09	"	"							
Aroclor 1254	ND		9.09	"	"							
Aroclor 1260	ND		9.09	"	"							
Surr: Decachlorobiphenyl (Surr)		Rec	covery: 103 %	Limits: 72-	126 %	Dilt	ution: 1x					Q-4
LCS (5100330-BS2)				Pre	pared: 10/	12/15 13:27	Analyzed:	10/14/15 10):26			C-(
EPA 8082A												
Aroclor 1016	174		10.0	ug/kg	1	250		70	47-134%			
Aroclor 1260	281		10.0	"	"	"		113	53-140%			
Surr: Decachlorobiphenyl (Surr)		Rec	covery: 119 %	Limits: 72-	126 %	Dilt	ution: 1x					Q-4
Matrix Spike (5100330-MS2)				Pre	pared: 10/	12/15 13:27	Analyzed:	10/14/15 10):44			C-
QC Source Sample: TACK-HM-1 (A	A5J0281-02R	E1)										
EPA 8082A												
Aroclor 1016	139		9.90	ug/kg	1	248	ND	56	47-134%			
Aroclor 1260	222		9.90	"	"	"	ND	90	53-140%			
Surr: Decachlorobiphenyl (Surr)		Re	ecovery: 98 %	Limits: 72-	126 %	Dilı	ution: 1x					Q-4

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 4 of 7

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number: Evraz OR SteelReported:Bellingham, WA 98226Project Manager: Nathan Cutler10/15/15 14:59

SAMPLE PREPARATION INFORMATION

	Polychlorinated Biphenyls by EPA 8082A														
Prep: EPA 3546					Sample	Default	RL Prep								
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor								
Batch: 5100330															
A5J0281-01	Solid	EPA 8082A	10/08/15 09:35	10/12/15 13:27	2.08g/5mL	10g/5mL	4.81								
A5J0281-02RE1	Solid	EPA 8082A	10/08/15 09:45	10/12/15 13:27	10.12g/5mL	10g/5mL	0.99								

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 7

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction CoProject:EvrazOR Steel4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathar Cutler10/15/15 14:59

Notes and Definitions

Qualifiers:

C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dunell la final

Page 6 of 7

Bellingham, WA 98226 Strider Construction Co 4721 Northwest Drive

Project:

Project Manager: Nathan Cutler

Project Number: Evraz OR Steel Evraz OR Steel

503-718-0333 Fax

10/15/15 14:59 Reported:

APEX LABS

CHAIN OF CUSTODY

coc lof 1

12232 S.W. Garden Place, Tigard, OR	9722	23 Ph: 50	03-718-2.	323 Fa	x: 503	-718-	0333																			
Company Strider Construction	n C	D,	Project N	∕lgr: ∕	6th	αΛ	Gi	1//	PY.			Proje	ect Na	me: E	5VK	A7	-1)	R Stee	1		Proje	ect#				
Address: 472 Marthurs + 1	rive	2 Bell	linghay	n (U)	A C	780	126	,	Phon	e: 36	5()-	73	9-2	1729	Offi Eax:	0	60-	380-1234	Emai	1: <i>11</i> 0	tha	no	25/	ride	^ann	truction
Sampled by: J.SUM, Int	00	ral	J															S REQUEST					·			O,
Site Location: OR WA Other:	LAB ID #		ш	MATRIX	# OF CONTAINERS	NWTPH-HCID	NWTPH-Dx	NWTPH-Gx	8260 VOC	8260 RBDM VOCs	8260 BTEX	8270 SVOC	8270 SIM PAHS	8082 PCBs (80824)	600 TTO	RCRA Metals (8)	TCLP Metals (8)	b, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Ag, Mn, Mo, Ni, K, Ag, Na, Tl, V, Zn L DISS TCLP	1200- COLS	Z-						
SAMPLE ID	LAE	DATE	TIME		10 #	NW	N.	ž	826(8260	8260	8270	8270	8082	, 009	RCF	TCL	Al, Sb, Ca, Cr, Hg, Mg Se, Ag, TOTAL	1200	1200-Z						
MULCH-HM-1.		198/15	0935	other	1									X												
TACK-HM-1			0945											X												
MucH-HS-1		1	0940	$ \downarrow\rangle$	i									X												
1																				9						
5					٨		-	=	>																_	
5					\sum_{i}		\geq					7														
7		10000000						7				7							************							
3					(,		2)								_									
						10/	8/1	5																		
Normal Turn Around Time (TAT) = 7-10 Bus	iness D	Days		YES		(ov								RUC				0-6:	_							
TAT Requested (circle)	1 Day 4 DA		2 Day 5 DAY	_	Other:) :					#	ひし	D	FC	OR	C	>N	LPBS 17	t	-	IN	151	RU.	A i	'DN	S
SAMPLE	S AR	E HELD I	OR 30 D.	AYS																						
RELINQUISHED/BY:	Date: /	0/8/15	RECEIVE Signature:	11			I	Date: I	10/i		RELI!		SHED	BY:					RECE Signatu		BY:		,	Date:		
Printed Name: Angrew J Halinsh	//me:	1557	Printed Nar	ne:K0	evi	17	ive	ne:	15	77	_	d Nam	e:						Printed					Date: Γime:		
company: Integral an	-1/f	ng Inc	Company: 1	40	2e)	(La	1b	5_	50.E	Comp	any:	,					(Compa	ny:						

Apex Laboratories

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TOPSOIL

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, October 14, 2015

Nathan Cutler Strider Construction Co 4721 Northwest Drive Bellingham, WA 98226

RE: Evraz OR Steel / Evraz OR Steel

Enclosed are the results of analyses for work order <u>A5I0362</u>, which was received by the laboratory on 9/14/2015 at 2:37:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

alumel la finiel

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number: Evraz OR SteelReported:Bellingham, WA 98226Project Manager: Nathan Cutler10/14/15 13:27

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMA	ATION		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
SH-Composite	A5I0362-03	Soil	09/14/15 14:00	09/14/15 14:37	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

		Polyc	hlorinated Bi	phenyls by E	PA 8082A			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SH-Composite (A5I0362-03)			Matrix: Soil		Batch: 51001	53		C-07
Aroclor 1016	ND	5.84	11.7	ug/kg dry	1	10/06/15 17:49	EPA 8082A	
Aroclor 1221	ND	5.84	11.7	"	"	"	"	
Aroclor 1232	ND	11.7	11.7	"	"	"	"	
Aroclor 1242	ND	5.84	11.7	"	n n	"	"	
Aroclor 1248	ND	5.84	11.7	"	"	"	"	
Aroclor 1254	ND	5.84	11.7	"	"	"	"	
Aroclor 1260	ND	5.84	11.7	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 93 %	Limits: 72-126 %	6 "	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 3 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Drive

OP Steel

4721 Northwest Drive Project Number: Evraz OR Steel
Bellingham, WA 98226 Project Manager: Nathan Cutler

Reported: 10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

		Organ	ochlorine Pes	ticides by El	PA 8081B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SH-Composite (A5I0362-03RE1)			Matrix: Soil	В	Batch: 510020	06		C-05, H-0
Aldrin	ND	1.10	2.19	ug/kg dry	1	10/08/15 11:32	EPA 8081B	
alpha-BHC	ND	1.10	2.19	"	"	"	"	
beta-BHC	ND	2.19	2.19	"	"	"	"	
delta-BHC	ND	1.10	2.19	"	"	"	"	
gamma-BHC (Lindane)	ND	1.10	2.19	"	"	"	"	
cis-Chlordane	ND	2.63	2.63	"	"	"	"	R-02
trans-Chlordane	ND	1.10	2.19	"	"	"	"	
4,4'-DDD	ND	1.10	2.19	"	"	"	"	
4,4'-DDE	ND	4.61	4.61	"	"	"	"	R-02
4,4'-DDT	ND	2.19	2.19	"	"	"	"	
Dieldrin	ND	1.10	2.19	"	"	"	"	
Endosulfan I	ND	1.10	2.19	"	"	"	"	
Endosulfan II	ND	2.19	2.19	"	"	"	"	
Endosulfan sulfate	ND	2.19	2.19	"	"	"	"	
Endrin	ND	1.10	2.19	"	"	"	"	
Endrin Aldehyde	ND	2.19	2.19	"	"	"	"	
Endrin ketone	ND	2.19	2.19	"	"	"	"	
Heptachlor	ND	1.10	2.19	"	"	"	"	
Heptachlor epoxide	ND	1.10	2.19	"	"	"	"	
Methoxychlor	ND	7.02	7.02	"	"	"	"	R-02
Chlordane (Technical)	ND	32.9	65.8	"	"	"	"	
Toxaphene (Total)	ND	32.9	65.8	"	"	"	"	
Surrogate: 2,4,5,6-TCMX (Surr)		R	lecovery: 62 % L	imits: 42-129 %	"	"	"	

92 % Limits: 65-151 %

Apex Laboratories

Dund by Smil

Decachlorobiphenyl (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bellingham, WA 98226

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Reported:

Strider Construction Co Project: Evraz OR Steel 4721 Northwest Drive Project Number: Evraz OR Steel

Project Manager: Nathan Cutler 10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D

Reporting

Analyte Result MDL Limit Dilution Date Analyzed Method Notes Units SH-Composite (A5I0362-03RE1) Matrix: Soil Batch: 5100135 H-06 Acenaphthene ND 16.7 33.5 ug/kg dry 10 10/06/15 15:18 EPA 8270D Acenaphthylene ND 16.7 33.5 Anthracene ND 16.7 33.5 19.5 16.7 33.5 Benz(a)anthracene Benzo(a)pyrene ND 25.1 50.2 25.1 Benzo(b)fluoranthene ND 50.2 ND 25.1 50.2 Benzo(k)fluoranthene Benzo(g,h,i)perylene ND 16.7 33.5 Chrysene 18.5 16.7 33.5 ND 16.7 33.5 Dibenz(a,h)anthracene Fluoranthene 56.3 16.7 33.5 Fluorene ND 16.7 33.5 ND 16.7 Indeno(1,2,3-cd)pyrene 33.5 1-Methylnaphthalene ND 33.5 66.8 2-Methylnaphthalene ND 33.5 66.8 Naphthalene ND 33.5 66.8 16.7 33.5 Phenanthrene 46.0 Pyrene 45.4 16.7 33.5 25.1 ND 50.2 Carbazole ND 16.7 33.5 Dibenzofuran 4-Chloro-3-methylphenol ND 167 335 83.6 2-Chlorophenol ND 167

Apex Laboratories

Wand to fruit

2,4-Dichlorophenol

2,4-Dimethylphenol

4,6-Dinitro-2-methylphenol

Pentachlorophenol (PCP)

2,3,4,6-Tetrachlorophenol

2,3,5,6-Tetrachlorophenol

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dinitrophenol

2-Methylphenol 3+4-Methylphenol(s)

2-Nitrophenol

4-Nitrophenol

Phenol

The results in this report apply to the samples analyzed in accordance with the chain of

Darrell Auvil, Project Manager

ND

83.6

83.6

418

418

41.8

41.8

167

167

167

33.5

83.6

83.6

83.6

83.6

167

167

836

836

83.6

83.6

335

335

335

66.8

167

167

167

167

Page 5 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Drive

Project Number: Evraz OP Steel

4721 Northwest DriveProject Number: Evraz OR SteelBellingham, WA 98226Project Manager: Nathan Cutler

Reported: 10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

		Semivola	tile Organic Co	mpounas b	y ⊨PA 8270	טו		
A 1 4	Dagult	MDL	Reporting		Dil C	D-4- A 1 1	Moth - J	Nat
Analyte	Result	MIDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SH-Composite (A5I0362-03RE1)			Matrix: Soil		atch: 51001			H-0
Bis(2-ethylhexyl)phthalate	ND	251	502	ug/kg dry	10	"	EPA 8270D	
Butyl benzyl phthalate	212	167	335	"	"	"	"	J
Diethylphthalate	ND	167	335	"	"	"	"	
Dimethylphthalate	ND	167	335	"	"	"	"	
Di-n-butylphthalate	ND	167	335	"	"	"	"	
Di-n-octyl phthalate	ND	167	335	"	"	"	"	
N-Nitrosodimethylamine	ND	41.8	83.6	"	"	"	"	
N-Nitroso-di-n-propylamine	ND	41.8	83.6	"	"	"	"	
N-Nitrosodiphenylamine	ND	41.8	83.6	"	"	"	"	
Bis(2-Chloroethoxy) methane	ND	41.8	83.6	"	"	"	"	
Bis(2-Chloroethyl) ether	ND	41.8	83.6	"	"	"	"	
Bis(2-Chloroisopropyl) ether	ND	41.8	83.6	"	"	"	"	
Hexachlorobenzene	ND	16.7	33.5	"	"	"	"	
Hexachlorobutadiene	ND	41.8	83.6	"	"	"	"	
Hexachlorocyclopentadiene	ND	83.6	167	"	"	"	"	
Hexachloroethane	ND	41.8	83.6	"	"	"	"	
2-Chloronaphthalene	ND	16.7	33.5	"	"	"	"	
1,2-Dichlorobenzene	ND	41.8	83.6	"	"	"	"	
1,3-Dichlorobenzene	ND	41.8	83.6	"	"	"	"	
1,4-Dichlorobenzene	ND	41.8	83.6	"	"	"	"	
1,2,4-Trichlorobenzene	ND	41.8	83.6	"	"	"	"	
4-Bromophenyl phenyl ether	ND	41.8	83.6	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	41.8	83.6	"	"	"	"	
Aniline	ND	83.6	167	"	"	"	"	
4-Chloroaniline	ND	41.8	83.6	"	"	"	"	
2-Nitroaniline	ND	335	668	"	"	"	"	
3-Nitroaniline	ND	335	668	"	"	"	"	
4-Nitroaniline	ND	335	668	"	"	"	"	
Nitrobenzene	ND	167	335	"	"	"	"	
2,4-Dinitrotoluene	ND	167	335	"	"	"	"	
2,6-Dinitrotoluene	ND	167	335	"	"	"	"	
Benzoic acid	ND	2090	4180	"	"	"	"	
Benzyl alcohol	ND	83.6	167	"	"	"	"	
Isophorone	ND	41.8	83.6	"	"	"	"	
Azobenzene (1,2-DPH)	ND	41.8	83.6	"	"	"	"	

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

		Semivolati.	le Organic	Compounds by	EPA 8270	<u>D</u>		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SH-Composite (A5I0362-03RE1)			Matrix: Soi	il Ba	atch: 510013	35		H-0
Bis(2-Ethylhexyl) adipate	ND	418	836	ug/kg dry	10	"	EPA 8270D	
3,3'-Dichlorobenzidine	ND	167	335	"	"	"	"	
1,2-Dinitrobenzene	ND	418	836	"	"	"	"	
1,3-Dinitrobenzene	ND	418	836	"	"	"	"	
1,4-Dinitrobenzene	ND	418	836	"	"	"	"	
Pyridine	ND	83.6	167	"	"	"	"	
Surrogate: Nitrobenzene-d5 (Surr)		Rec	covery: 75 %	Limits: 37-122 %	"	"	"	
2-Fluorobiphenyl (Surr)			60 %	Limits: 44-115 %	"	"	"	
Phenol-d6 (Surr)			55 %	Limits: 33-122 %	"	"	"	
p-Terphenyl-d14 (Surr)			90 %	Limits: 54-127 %	"	"	"	
2-Fluorophenol (Surr)			62 %	Limits: 35-115 %	"	"	"	
2,4,6-Tribromophenol (Surr)			88 %	Limits: 39-132 %	"	"	"	

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 7 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

		Tot	al Metals by	EPA 6020 (IC	PMS)		•	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SH-Composite (A5I0362-03)			Matrix: Soil	Omts				
Batch: 5100166								
Arsenic	3.78	0.612	1.22	mg/kg dry	10	10/07/15 12:40	EPA 6020A	
Cadmium	0.257	0.122	0.245	"	"	"	"	
Chromium	18.9	0.612	1.22	"	"	"	"	
Copper	25.8	0.612	1.22	"	"	"	"	
Lead	9.92	0.122	0.245	"	"	"	"	
Manganese	1180	0.612	1.22	"	"	"	"	
Mercury	ND	0.0490	0.0979	"	"	"	"	
Zinc	72.1	2.45	4.90	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SH-Composite (A5I0362-03)			Matrix: Soil	В	atch: 510014	40		
% Solids	80.7	1.00	1.00	% by Weight	1	10/07/15 09:19	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bip	henyls	by EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100153 - EPA 3546							Soi	l				
Blank (5100153-BLK1)				Prep	ared: 10/	06/15 12:55	Analyzed:	10/06/15 17	7:13			C-
EPA 8082A												
Aroclor 1016	ND	4.17	8.33	ug/kg wet	1							
Aroclor 1221	ND	4.17	8.33	"	"							
Aroclor 1232	ND	4.17	8.33	"	"							
Aroclor 1242	ND	4.17	8.33	"	"							
Aroclor 1248	ND	4.17	8.33	"	"							
Aroclor 1254	ND	4.17	8.33	"	"							
Aroclor 1260	ND	4.17	8.33	"	"							
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 104 %	Limits: 72-1	26 %	Dili	ution: 1x					
LCS (5100153-BS1)				Prep	ared: 10/	06/15 12:55	Analyzed:	10/06/15 17	7:31			C-
EPA 8082A												
Aroclor 1016	197	5.00	10.0	ug/kg wet	1	250		79	47-134%			
Aroclor 1260	270	5.00	10.0	"	"	"		108	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 109 %	Limits: 72-1	26 %	Dili	ution: 1x					
Duplicate (5100153-DUP1)				Prep	ared: 10/	06/15 12:55	Analyzed:	10/06/15 18	3:26			C-
QC Source Sample: SH-Composite (A510362-03)	1										
EPA 8082A												
Aroclor 1016	ND	5.77	11.5	ug/kg dry	1		ND				30%	
Aroclor 1221	ND	5.77	11.5	"	"		ND				30%	
Aroclor 1232	ND	11.5	11.5	"	"		ND				30%	
Aroclor 1242	ND	5.77	11.5	"	"		ND				30%	
Aroclor 1248	ND	5.77	11.5	"	"		ND				30%	
Aroclor 1254	ND	5.77	11.5	"	"		ND				30%	
Aroclor 1260	ND	5.77	11.5	"	"		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 89 %	Limits: 72-1	26 %	Dili	ution: 1x					

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 10 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100206 - EPA 3546							Soi		-			
Blank (5100206-BLK1)	1304UA (GI	-0)		Pren	ared: 10/0	06/15 12:52):56			C-0
EPA 8081B				ТТОР	arca. 10/	90/13 12.32	7 maryzea.	10/00/13 10	7.50			C-0
Aldrin	ND	0.833	1.67	ug/kg wet	1							
alpha-BHC	ND	0.833	1.67	"	"							
beta-BHC	ND	0.833	1.67	"	"							
delta-BHC	ND	0.833	1.67	"	"							
gamma-BHC (Lindane)	ND	0.833	1.67	"	"							
cis-Chlordane	ND	0.833	1.67	"	"							
trans-Chlordane	ND	0.833	1.67	"	"							
4,4'-DDD	ND	0.833	1.67	"	"							
4,4'-DDE	ND	0.833	1.67	"	"							
4,4'-DDT	ND	0.833	1.67	"	"							
Dieldrin	ND	0.833	1.67	"	"							
Endosulfan I	ND	0.833	1.67	"	"							
Endosulfan II	ND	0.833	1.67	"	"							
Endosulfan sulfate	ND	0.833	1.67	"	"							
Endrin	ND	0.833	1.67	"	"							
Endrin Aldehyde	ND	0.833	1.67	"	"							
Endrin ketone	ND	0.833	1.67	"	"							
Heptachlor	ND	0.833	1.67	"	"							
Heptachlor epoxide	ND	0.833	1.67	"	"							
Methoxychlor	ND	2.50	5.00	"	"							
Chlordane (Technical)	ND	25.0	50.0	"	"							
Toxaphene (Total)	ND	25.0	50.0	"	"							
Surr: 2,4,5,6-TCMX (Surr)		Re	covery: 63 %	Limits: 42-1	29 %	Dilı	ution: 1x					
Decachlorobiphenyl (Surr)			85 %	65-1	51 %		"					
LCS (5100206-BS1)				Prepa	ared: 10/0	06/15 12:52	Analyzed:	10/08/15 11	:14			C-0
EPA 8081B												
Aldrin	45.8	1.00	2.00	ug/kg wet	1	50.0		92	45-136%			
alpha-BHC	45.4	1.00	2.00	"	"	"		91	45-137%			
beta-BHC	45.1	1.00	2.00	"	"	"		90	50-136%			
delta-BHC	49.5	1.00	2.00	"	"	"		99	47-139%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Price

OP Steel

4721 Northwest Drive Project Number: Evraz OR Steel Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

) (D)	Reporting	** *	D.1	Spike	Source	A/DEG	%REC	n n n	RPD	NY .
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 5100206 - EPA 3546	3640A (GF	PC)					Soil					
LCS (5100206-BS1)				Prep	ared: 10/	06/15 12:52	Analyzed:	10/08/15 1	1:14			C-05
gamma-BHC (Lindane)	46.9	1.00	2.00	"	"	"		94	49-135%			
cis-Chlordane	46.1	1.00	2.00	"	"	"		92	54-133%			
trans-Chlordane	46.6	1.00	2.00	"	"	"		93	53-135%			
4,4'-DDD	48.7	1.00	2.00	"	"	"		97	56-139%			
4,4'-DDE	48.1	1.00	2.00	"	"	"		96	56-134%			
4,4'-DDT	52.9	1.00	2.00	"	"	"		106	50-141%			
Dieldrin	48.7	1.00	2.00	"	"	"		97	56-136%			
Endosulfan I	47.8	1.00	2.00	"	"	"		96	52-132%			
Endosulfan II	49.5	1.00	2.00	"	"	"		99	53-134%			
Endosulfan sulfate	48.8	1.00	2.00	"	"	"		98	55-136%			
Endrin	51.8	1.00	2.00	"	"	"		104	56-140%			
Endrin Aldehyde	48.8	1.00	2.00	"	"	"		98	35-137%			
Endrin ketone	48.8	1.00	2.00	"	"	"		98	55-136%			
Heptachlor	47.9	1.00	2.00	"	"	"		96	47-136%			
Heptachlor epoxide	46.2	1.00	2.00	"	"	"		92	52-136%			
Methoxychlor	58.3	3.00	6.00	"	"	"		117	52-143%			
urr: 2,4,5,6-TCMX (Surr)		Re	covery: 71 %	Limits: 42-1	29 %	Dilı	ution: 1x					
Decachlorobiphenyl (Surr)			87 %	65-1	51 %		"					
Ouplicate (5100206-DUP1)				Prep	ared: 10/	06/15 12:52	Analyzed:	10/08/15 1	2:08			C-05, H-02
C Source Sample: SH-Composite	(A5I0362-03R	RE1)										
CPA 8081B												
Aldrin	ND	1.09	2.18	ug/kg dry	1		ND				30%	
alpha-BHC	ND	1.09	2.18	"	"		ND				30%	
oeta-BHC	ND	1.09	2.18	"	"		ND				30%	
delta-BHC	ND	1.09	2.18	"	"		ND				30%	
gamma-BHC (Lindane)	ND	1.09	2.18	"	"		ND				30%	
cis-Chlordane	ND	2.18	2.18	"	"		ND				30%	
rans-Chlordane	ND	1.09	2.18	"	"		ND				30%	
4,4'-DDD	ND	1.09	2.18	"	"		ND				30%	
4,4'-DDE	ND	3.71	3.71	"	"		ND				30%	R-02
4,4'-DDT	ND	2.18	2.18	,,	,,		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Quand by funil

Page 12 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	nlorine Pe	sticides	by EPA 80	81B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100206 - EPA 3540	6/3640A (GI	PC)					Soi	l				
Duplicate (5100206-DUP1)				Pre	pared: 10/	06/15 12:52	Analyzed:	10/08/15 12	:08			C-05, H-02
QC Source Sample: SH-Composite	e (A5I0362-031	RE1)										
Dieldrin	ND	1.09	2.18	"	"		ND				30%	
Endosulfan I	ND	1.09	2.18	"	"		ND				30%	
Endosulfan II	ND	2.18	2.18	"	"		ND				30%	
Endosulfan sulfate	ND	1.09	2.18	"	"		ND				30%	
Endrin	ND	1.09	2.18	"	"		ND				30%	
Endrin Aldehyde	ND	2.18	2.18	"	"		ND				30%	
Endrin ketone	ND	2.18	2.18	"	"		ND				30%	
Heptachlor	ND	1.09	2.18	"	"		ND				30%	
Heptachlor epoxide	ND	1.09	2.18	"	"		1.31			***	30%	
Methoxychlor	ND	6.55	6.55	"	"		ND				30%	
Chlordane (Technical)	ND	32.7	65.5	"	"		ND				30%	
Toxaphene (Total)	ND	32.7	65.5	"	"		ND				30%	
Surr: 2,4,5,6-TCMX (Surr)		Re	covery: 55 %	Limits: 42	-129 %	Dilu	tion: Ix					
Decachlorobiphenyl (Surr)			78 %	65	-151 %		"					

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 13 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:Evraz OR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			D (0.1	C		0/DEC		DDD	
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
3atch 5100135 - EPA 3546	1						Soi	l				
Blank (5100135-BLK2)				Prepa	ared: 10/0	06/15 07:41	Analyzed:	10/06/15 12	:41			
EPA 8270D												
Acenaphthene	ND	1.33	2.67	ug/kg wet	1							
Acenaphthylene	ND	1.33	2.67	"	"							
Anthracene	ND	1.33	2.67	"	"							
Benz(a)anthracene	ND	1.33	2.67	"	"							
Benzo(a)pyrene	ND	2.00	4.00	"	"							
Benzo(b)fluoranthene	ND	2.00	4.00	"	"							
Benzo(k)fluoranthene	ND	2.00	4.00	"	"							
Benzo(b+k)fluoranthene(s)	ND	4.00	8.00	"	"							
Benzo(g,h,i)perylene	ND	1.33	2.67	"	"							
Chrysene	ND	1.33	2.67	"	"							
Dibenz(a,h)anthracene	ND	1.33	2.67	"	"							
Fluoranthene	ND	1.33	2.67	"	"							
Fluorene	ND	1.33	2.67	"	"							
Indeno(1,2,3-cd)pyrene	ND	1.33	2.67	"	"							
l-Methylnaphthalene	ND	2.67	5.33	"	"							
2-Methylnaphthalene	ND	2.67	5.33	"	"							
Naphthalene	ND	2.67	5.33	"	"							
Phenanthrene	ND	1.33	2.67	"	"							
Pyrene	ND	1.33	2.67	"	"							
Carbazole	ND	2.00	4.00	"	"							
Dibenzofuran	ND	1.33	2.67	"	"							
4-Chloro-3-methylphenol	ND	13.3	26.7	"	"							
2-Chlorophenol	ND	6.67	13.3	"	"							
2,4-Dichlorophenol	ND	6.67	13.3	"	"							
2,4-Dimethylphenol	ND	6.67	13.3	"	"							
2,4-Dinitrophenol	ND	33.3	66.7	"	"							
4,6-Dinitro-2-methylphenol	ND	33.3	66.7	"	"							
2-Methylphenol	ND	3.33	6.67	"	"							
3+4-Methylphenol(s)	ND	3.33	6.67	"	"							
2-Nitrophenol	ND	13.3	26.7	,,	"							

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546							Soil					
Blank (5100135-BLK2)				Prep	ared: 10/0	06/15 07:41	Analyzed:	10/06/15 12	:41			
4-Nitrophenol	ND	13.3	26.7	ug/kg wet	"							
Pentachlorophenol (PCP)	ND	13.3	26.7	"	"							
Phenol	ND	2.67	5.33	"	"							
2,3,4,6-Tetrachlorophenol	ND	6.67	13.3	"	"							
2,3,5,6-Tetrachlorophenol	ND	6.67	13.3	"	"							
2,4,5-Trichlorophenol	ND	6.67	13.3	"	"							
2,4,6-Trichlorophenol	ND	6.67	13.3	"	"							
Bis(2-ethylhexyl)phthalate	ND	20.0	40.0	"	"							
Butyl benzyl phthalate	ND	13.3	26.7	"	"							
Diethylphthalate	ND	13.3	26.7	"	"							
Dimethylphthalate	ND	13.3	26.7	"	"							
Di-n-butylphthalate	ND	13.3	26.7	"	"							
Di-n-octyl phthalate	ND	13.3	26.7	"	"							
N-Nitrosodimethylamine	ND	3.33	6.67	"	"							
N-Nitroso-di-n-propylamin	ND	3.33	6.67	"	"							
N-Nitrosodiphenylamine	ND	3.33	6.67	"	"							
Bis(2-Chloroethoxy) nethane	ND	3.33	6.67	"	"							
Bis(2-Chloroethyl) ether	ND	3.33	6.67	"	"							
Bis(2-Chloroisopropyl) ether	ND	3.33	6.67	"	"							
Hexachlorobenzene	ND	1.33	2.67	"	"							
Hexachlorobutadiene	ND	3.33	6.67	"	"							
Hexachlorocyclopentadiene	ND	6.67	13.3	"	"							
Hexachloroethane	ND	3.33	6.67	"	"							
-Chloronaphthalene	ND	1.33	2.67	"	"							
,2-Dichlorobenzene	ND	3.33	6.67	"	"							
,3-Dichlorobenzene	ND	3.33	6.67	"	"							
,4-Dichlorobenzene	ND	3.33	6.67	"	"							
,2,4-Trichlorobenzene	ND	3.33	6.67	"	"							

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 15 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Reported:

10/14/15 13:27

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Drive Project Number: Evraz OR Steel
Bellingham, WA 98226 Project Manager: Nathan Cutler

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic Co	mpou	nas by EPA	4 82/UD					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546							Soi	l				
Blank (5100135-BLK2)				Prepa	ared: 10/	06/15 07:41	Analyzed:	10/06/15 1	2:41			
4-Bromophenyl phenyl	ND	3.33	6.67	ug/kg wet	"							
ether 4-Chlorophenyl phenyl ether	ND	3.33	6.67	"	"							
Aniline	ND	6.67	13.3	"	"							
4-Chloroaniline	ND	3.33	6.67	"	"							
2-Nitroaniline	ND	26.7	53.3	"	"							
3-Nitroaniline	ND	26.7	53.3	"	"							
4-Nitroaniline	ND	26.7	53.3	"	"							
Nitrobenzene	ND	13.3	26.7	"	"							
2,4-Dinitrotoluene	ND	13.3	26.7	"	"							
2,6-Dinitrotoluene	ND	13.3	26.7	"	"							
Benzoic acid	ND	167	333	"	"							
Benzyl alcohol	ND	6.67	13.3	"	"							
Isophorone	ND	3.33	6.67	"	"							
Azobenzene (1,2-DPH)	ND	3.33	6.67	"	"							
Bis(2-Ethylhexyl) adipate	ND	33.3	66.7	"	"							
3,3'-Dichlorobenzidine	ND	13.3	26.7	"	"							
1,2-Dinitrobenzene	ND	33.3	66.7	"	"							
1,3-Dinitrobenzene	ND	33.3	66.7	"	"							
1,4-Dinitrobenzene	ND	33.3	66.7	"	"							
Pyridine	ND	6.67	13.3	"	"							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 86 %	Limits: 37-1	22 %	Dilu	tion: Ix					
2-Fluorobiphenyl (Surr)			73 %	44-1.	15 %		"					
Phenol-d6 (Surr)			71 %	33-1.	22 %		"					
p-Terphenyl-d14 (Surr)			94 %	54-1.	27 %		"					
2-Fluorophenol (Surr)			71 %	35-1	15%		"					
2,4,6-Tribromophenol (Surr)			86 %	39-1.	32 %		"					
LCS (5100135-BS2)				Prepa	ared: 10/	06/15 07:41	Analyzed:	10/06/15 1	3:19			
EPA 8270D												
Acenaphthene	671	2.00	4.00	ug/kg wet	1	800		84	40-122%			
Acenaphthylene	639	2.00	4.00	"	"	"		80	32-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Drive Project Number: Evraz OR Steel Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	ompour	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546	i						Soil					
LCS (5100135-BS2)				Prep	ared: 10/0	06/15 07:41	Analyzed:	10/06/15 1	3:19			
Anthracene	685	2.00	4.00	ug/kg wet	"	"		86	47-123%			
Benz(a)anthracene	750	2.00	4.00	"	"	"		94	49-126%			
Benzo(a)pyrene	816	3.00	6.00	"	"	"		102	45-129%			
Benzo(b)fluoranthene	882	3.00	6.00	"	"	"		110	45-132%			
Benzo(k)fluoranthene	836	3.00	6.00	"	"	"		104	47-132%			
Benzo(b+k)fluoranthene(s)	1720	6.00	12.0	"	"	1600		108	45-132%			
Benzo(g,h,i)perylene	737	2.00	4.00	"	"	800		92	43-134%			
Chrysene	744	2.00	4.00	"	"	"		93	50-124%			
Dibenz(a,h)anthracene	746	2.00	4.00	"	"	"		93	45-134%			
Fluoranthene	680	2.00	4.00	"	"	"		85	50-127%			
Fluorene	668	2.00	4.00	"	"	"		83	43-125%			
Indeno(1,2,3-cd)pyrene	716	2.00	4.00	"	"	"		90	45-133%			
I-Methylnaphthalene	584	4.00	8.00	"	"	"		73	40-120%			
2-Methylnaphthalene	604	4.00	8.00	"	"	"		75	38-122%			
Naphthalene	573	4.00	8.00	"	"	"		72	35-123%			
Phenanthrene	674	2.00	4.00	"	"	"		84	50-121%			
Pyrene	660	2.00	4.00	"	"	"		83	47-127%			
Carbazole	646	3.00	6.00	"	"	"		81	50-122%			
Dibenzofuran	625	2.00	4.00	"	"	"		78	44-120%			
4-Chloro-3-methylphenol	725	20.0	40.0	"	"	"		91	45-122%			
2-Chlorophenol	699	10.0	20.0	"	"	"		87	34-121%			
2,4-Dichlorophenol	663	10.0	20.0	"	"	"		83	40-122%			
2,4-Dimethylphenol	635	10.0	20.0	"	"	"		79	30-127%			
2,4-Dinitrophenol	766	50.0	100	"	"	"		96	5-137%			
4,6-Dinitro-2-methylphenol	762	50.0	100	"	"	"		95	29-132%			Q-41
2-Methylphenol	734	5.00	10.0	"	"	"		92	32-122%			
3+4-Methylphenol(s)	737	5.00	10.0	"	"	"		92	34-120%			
2-Nitrophenol	682	20.0	40.0	"	"	"		85	36-123%			
4-Nitrophenol	615	20.0	40.0	"	"	"		77	30-132%			
Pentachlorophenol (PCP)	748	20.0	40.0	"	"	"		94	25-133%			
Phenol	783	4.00	8.00	"	"	"		98	34-120%			Q-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Privat OP Steel

4721 Northwest DriveProject Number: Evraz OR SteelReported:Bellingham, WA 98226Project Manager: Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

				Organic Co	,							
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546							Soil					
CS (5100135-BS2)				Prepa	red: 10/0	06/15 07:41	Analyzed:	10/06/15 1	3:19			
2,3,4,6-Tetrachlorophenol	766	10.0	20.0	ug/kg wet	"	"		96	44-125%			
2,3,5,6-Tetrachlorophenol	737	10.0	20.0	"	"	"		92	40-120%			
2,4,5-Trichlorophenol	742	10.0	20.0	"	"	"		93	41-124%			
2,4,6-Trichlorophenol	710	10.0	20.0	"	"	"		89	39-126%			
Bis(2-ethylhexyl)phthalate	882	30.0	60.0	"	"	"		110	51-133%			
Butyl benzyl phthalate	862	20.0	40.0	"	"	"		108	48-132%			
Diethylphthalate	704	20.0	40.0	"	"	"		88	50-124%			
Dimethylphthalate	657	20.0	40.0	"	"	"		82	48-124%			
Di-n-butylphthalate	710	20.0	40.0	"	"	"		89	51-128%			
Di-n-octyl phthalate	962	20.0	40.0	"	"	"		120	44-140%			Q-4
N-Nitrosodimethylamine	676	5.00	10.0	"	"	"		84	23-120%			
N-Nitroso-di-n-propylamin	759	5.00	10.0	"	"	"		95	36-120%			
;					,,							
N-Nitrosodiphenylamine	710	5.00	10.0	"	"	"		89	38-127%			
Bis(2-Chloroethoxy) methane	641	5.00	10.0	"	"	"		80	36-121%			
Bis(2-Chloroethyl) ether	693	5.00	10.0	"	"	"		87	31-120%			
Bis(2-Chloroisopropyl)	644	5.00	10.0	"	"	"		80	33-131%			
ether												
Hexachlorobenzene	743	2.00	4.00	"	"	"		93	44-122%			
Hexachlorobutadiene	636	5.00	10.0	"	"	"		80	32-123%			
Hexachlorocyclopentadiene	722	10.0	20.0	"	"	"		90	5-140%			
Hexachloroethane	664	5.00	10.0	"	"	"		83	28-120%			
2-Chloronaphthalene	629	2.00	4.00	"	"	"		79	41-120%			
,2-Dichlorobenzene	626	5.00	10.0	"	"	"		78	33-120%			
,3-Dichlorobenzene	628	5.00	10.0	"	"	"		78	30-120%			
,4-Dichlorobenzene	636	5.00	10.0	"	"	"		79	31-120%			
,2,4-Trichlorobenzene	587	5.00	10.0	"	"	"		73	34-120%			
-Bromophenyl phenyl ther	763	5.00	10.0	"	"	"		95	46-124%			
-Chlorophenyl phenyl ther	712	5.00	10.0	"	"	"		89	45-121%			
niline	614	10.0	20.0	"	"	"		77	7-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest Drive Project Number: Evraz OR Steel Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270D Reporting Spike Source %REC RPD											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546	<u> </u>						Soi	I				
LCS (5100135-BS2)				Prepa	ared: 10/0	06/15 07:41	Analyzed:	10/06/15	13:19			
4-Chloroaniline	386	5.00	10.0	ug/kg wet	"	"		48	16-120%			
2-Nitroaniline	703	40.0	80.0	"	"	"		88	44-127%			
3-Nitroaniline	580	40.0	80.0	"	"	"		72	33-120%			
4-Nitroaniline	619	40.0	80.0	"	"	"		77	35-120%			
Nitrobenzene	728	20.0	40.0	"	"	"		91	34-122%			Q-41
2,4-Dinitrotoluene	718	20.0	40.0	"	"	"		90	48-126%			
2,6-Dinitrotoluene	720	20.0	40.0	"	"	"		90	46-124%			
Benzoic acid	633	250	500	"	"	1600		40	5-140%			Q-3
Benzyl alcohol	714	10.0	20.0	"	"	800		89	29-122%			
Isophorone	651	5.00	10.0	"	"	"		81	30-122%			
Azobenzene (1,2-DPH)	673	5.00	10.0	"	"	"		84	39-125%			
Bis(2-Ethylhexyl) adipate	849	50.0	100	"	"	"		106	60-121%			
3,3'-Dichlorobenzidine	1780	20.0	40.0	"	"	1600		111	22-121%			Q-4
1,2-Dinitrobenzene	708	50.0	100	"	"	800		88	44-120%			
1,3-Dinitrobenzene	667	50.0	100	"	"	"		83	42-127%			
1,4-Dinitrobenzene	723	50.0	100	"	"	"		90	37-132%			
Pyridine	575	10.0	20.0	"	"	"		72	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 92 %	Limits: 37-1	22 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			80 %	44-1.	15 %		"					
Phenol-d6 (Surr)			95 %		22 %		"					
p-Terphenyl-d14 (Surr)			106 %		27 %		"					
2-Fluorophenol (Surr)			92 % 101 %	35-1.	15 % 32 %		"					
2,4,6-Tribromophenol (Surr)			101 %	39-1.	32 70							
Duplicate (5100135-DUP1)				Prepa	ared: 10/0	06/15 07:41	Analyzed:	10/06/15	15:57			H-
QC Source Sample: SH-Composite EPA 8270D	(A510362-03F	RE1)										
Acenaphthene	ND	17.0	34.2	ug/kg dry	10		ND				30%	
Acenaphthylene	ND	17.0	34.2	"	"		ND				30%	
Anthracene	ND	17.0	34.2	"	"		ND				30%	
Benz(a)anthracene	18.2	17.0	34.2	"	"		19.5			7	30%	J
Benzo(a)pyrene	ND	25.6	51.2				17.5			,	5070	·

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number: Evraz OR SteelReported:Bellingham, WA 98226Project Manager: Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		Semivolatile Organic Compounds by EPA 8270D										
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546	6						Soi					
Duplicate (5100135-DUP1)				Prep	ared: 10/0	06/15 07:41	Analyzed:	10/06/15 15	:57			H-06
QC Source Sample: SH-Composito	e (A5I0362-03I	RE1)										
Benzo(b)fluoranthene	ND	25.6	51.2	ug/kg dry	"		ND				30%	
Benzo(k)fluoranthene	ND	25.6	51.2	"	"		ND				30%	
Benzo(b+k)fluoranthene(s)	ND	51.2	102	"	"		ND				30%	
Benzo(g,h,i)perylene	ND	17.0	34.2	"	"		ND				30%	
Chrysene	17.5	17.0	34.2	"	"		18.5			5	30%	J
Dibenz(a,h)anthracene	ND	17.0	34.2	"	"		ND				30%	
Fluoranthene	55.6	17.0	34.2	"	"		56.3			1	30%	
Fluorene	ND	17.0	34.2	"	"		ND				30%	
Indeno(1,2,3-cd)pyrene	ND	17.0	34.2	"	"		ND				30%	
1-Methylnaphthalene	ND	34.2	68.2	"	"		ND				30%	
2-Methylnaphthalene	ND	34.2	68.2	"	"		ND				30%	
Naphthalene	ND	34.2	68.2	"	"		ND				30%	
Phenanthrene	45.0	17.0	34.2	"	"		46.0			2	30%	
Pyrene	42.5	17.0	34.2	"	"		45.4			7	30%	
Carbazole	ND	25.6	51.2	"	"		ND				30%	
Dibenzofuran	ND	17.0	34.2	"	"		ND				30%	
4-Chloro-3-methylphenol	ND	170	342	"	"		ND				30%	
2-Chlorophenol	ND	85.4	170	"	"		ND				30%	
2,4-Dichlorophenol	ND	85.4	170	"	"		ND				30%	
2,4-Dimethylphenol	ND	85.4	170	"	"		ND				30%	
2,4-Dinitrophenol	ND	426	854	"	"		ND				30%	
4,6-Dinitro-2-methylphenol	ND	426	854	"	"		ND				30%	
2-Methylphenol	ND	42.6	85.4	"	"		ND				30%	
3+4-Methylphenol(s)	ND	42.6	85.4	"	"		ND				30%	
2-Nitrophenol	ND	170	342	"	"		ND				30%	
4-Nitrophenol	ND	170	342	"	"		ND				30%	
Pentachlorophenol (PCP)	ND	170	342	"	"		ND				30%	
Phenol	ND	34.2	68.2	"	"		ND				30%	
2,3,4,6-Tetrachlorophenol	ND	85.4	170	"	"		ND				30%	
2,3,5,6-Tetrachlorophenol	ND	85.4	170	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund to buil

Page 20 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number: Evraz OR SteelReported:Bellingham, WA 98226Project Manager: Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	ompour	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546							Soi					
Duplicate (5100135-DUP1)				Prepa	ared: 10/0	06/15 07:41	Analyzed:	10/06/15 15	:57			H-06
QC Source Sample: SH-Composite	(A5I0362-03I	RE1)										
2,4,5-Trichlorophenol	ND	85.4	170	ug/kg dry	"		ND				30%	
2,4,6-Trichlorophenol	ND	85.4	170	"	"		ND				30%	
Bis(2-ethylhexyl)phthalate	ND	256	512	"	"		ND				30%	
Butyl benzyl phthalate	246	170	342	"	"		212			15	30%	J
Diethylphthalate	ND	170	342	"	"		ND				30%	
Dimethylphthalate	ND	170	342	"	"		ND				30%	
Di-n-butylphthalate	ND	170	342	"	"		ND				30%	
Di-n-octyl phthalate	ND	170	342	"	"		ND				30%	
N-Nitrosodimethylamine	ND	42.6	85.4	"	"		ND				30%	
N-Nitroso-di-n-propylamin e	ND	42.6	85.4	"	"		ND				30%	
N-Nitrosodiphenylamine	ND	42.6	85.4	"	"		ND				30%	
Bis(2-Chloroethoxy) methane	ND	42.6	85.4	"	"		ND				30%	
Bis(2-Chloroethyl) ether	ND	42.6	85.4	"	"		ND				30%	
Bis(2-Chloroisopropyl) ether	ND	42.6	85.4	"	"		ND				30%	
Hexachlorobenzene	ND	17.0	34.2	"	"		ND				30%	
Hexachlorobutadiene	ND	42.6	85.4	"	"		ND				30%	
Hexachlorocyclopentadiene	ND	85.4	170	"	"		ND				30%	
Hexachloroethane	ND	42.6	85.4	"	"		ND				30%	
2-Chloronaphthalene	ND	17.0	34.2	"	"		ND				30%	
1,2-Dichlorobenzene	ND	42.6	85.4	"	"		ND				30%	
1,3-Dichlorobenzene	ND	42.6	85.4	"	"		ND				30%	
1,4-Dichlorobenzene	ND	42.6	85.4	"	"		ND				30%	
1,2,4-Trichlorobenzene	ND	42.6	85.4	"	"		ND				30%	
4-Bromophenyl phenyl ether	ND	42.6	85.4	"	"		ND				30%	
4-Chlorophenyl phenyl ether	ND	42.6	85.4	"	"		ND				30%	
Aniline	ND	85.4	170	"	"		ND				30%	
4-Chloroaniline	ND	42.6	85.4	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to finish

Darrell Auvil, Project Manager

Page 21 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction CoProject:EvrazOR Steel4721 Northwest DriveProject Number:EvrazOR Steel

4721 Northwest Drive Project Number: Evraz OR Steel Bellingham, WA 98226 Project Manager: Nathan Cutler

Reported: 10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100135 - EPA 3546							Soil					
Duplicate (5100135-DUP1)				Prep	ared: 10/	06/15 07:41	Analyzed:	10/06/15 15	:57			Н-(
QC Source Sample: SH-Composite	(A5I0362-03I	RE1)										
2-Nitroaniline	ND	342	682	ug/kg dry	"		ND				30%	
3-Nitroaniline	ND	342	682	"	"		ND				30%	
4-Nitroaniline	ND	342	682	"	"		ND				30%	
Nitrobenzene	ND	170	342	"	"		ND				30%	
2,4-Dinitrotoluene	ND	170	342	"	"		ND				30%	
2,6-Dinitrotoluene	ND	170	342	"	"		ND				30%	
Benzoic acid	ND	2140	4260	"	"		ND				30%	
Benzyl alcohol	ND	85.4	170	"	"		ND				30%	
Isophorone	ND	42.6	85.4	"	"		ND				30%	
Azobenzene (1,2-DPH)	ND	42.6	85.4	"	"		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	426	854	"	"		ND				30%	
3,3'-Dichlorobenzidine	ND	170	342	"	"		ND				30%	
1,2-Dinitrobenzene	ND	426	854	"	"		ND				30%	
1,3-Dinitrobenzene	ND	426	854	"	"		ND				30%	
1,4-Dinitrobenzene	ND	426	854	"	"		ND				30%	
Pyridine	ND	85.4	170	"	"		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Rec	covery: 66 %	Limits: 37-1	22 %	Dil	ution: 10x					
2-Fluorobiphenyl (Surr)			58 %	44-1	15 %		"					
Phenol-d6 (Surr)			47 %	33-1	22 %		"					
p-Terphenyl-d14 (Surr)			78 %		27 %		"					
2-Fluorophenol (Surr)			55 %		15 %		"					
2,4,6-Tribromophenol (Surr)			90 %	39-1	32 %		"					

Apex Laboratories

Dund to Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 22 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	:PA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100166 - EPA 305	1A						Soil	l				
Blank (5100166-BLK1)				Prepa	red: 10/0	06/15 17:02	Analyzed:	10/07/15 1	2:34			
EPA 6020A												
Arsenic	ND	0.500	1.00	mg/kg wet	10							
Cadmium	ND	0.100	0.200	"	"							
Chromium	ND	0.500	1.00	"	"							
Copper	ND	0.500	1.00	"	"							
Lead	ND	0.100	0.200	"	"							
Manganese	ND	0.500	1.00	"	"							
Mercury	ND	0.0400	0.0800	"	"							
Zinc	ND	2.00	4.00	"	"							
LCS (5100166-BS1)				Prepa	red: 10/0	06/15 17:02	Analyzed:	10/07/15 1	2:37			
EPA 6020A												
Arsenic	51.6	0.500	1.00	mg/kg wet	10	50.0		103	80-120%			
Cadmium	51.4	0.100	0.200	"	"	"		103	"			
Chromium	52.4	0.500	1.00	"	"	"		105	"			
Copper	53.6	0.500	1.00	"	"	"		107	"			
Lead	52.4	0.100	0.200	"	"	"		105	"			
Manganese	53.3	0.500	1.00	"	"	"		107	"			
Mercury	1.00	0.0400	0.0800	"	"	1.00		100	"			
Zinc	53.8	2.00	4.00	"	"	50.0		108	"			
Duplicate (5100166-DUP1)				Prepa	red: 10/0	06/15 17:02	Analyzed:	10/07/15 1	2:43			
QC Source Sample: SH-Composit	te (A510362-03))										
EPA 6020A												
Arsenic	3.51	0.623	1.25	mg/kg dry	10		3.78			7	40%	
Cadmium	0.299	0.125	0.249	"	"		0.257			15	40%	
Chromium	19.3	0.623	1.25	"	"		18.9			2	40%	
Copper	25.8	0.623	1.25	"	"		25.8			0.07	40%	
Lead	9.53	0.125	0.249	"	"		9.92			4	40%	
Manganese	978	0.623	1.25	"	"		1180			19	40%	
Mercury	ND	0.0499	0.0997	"	"		ND				40%	
Zinc	74.6	2.49	4.99	"	"		72.1			3	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to buil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5100166 - EPA 3051	Α						Soi	<u> </u>					
Matrix Spike (5100166-MS1)				Prep	ared: 10/	06/15 17:02	Analyzed:	10/07/15	12:46				
QC Source Sample: SH-Composite EPA 6020A	(A5I0362-03))											
Arsenic	69.1	0.644	1.29	mg/kg dry	10	64.4	3.78	101	75-125%				
Cadmium	63.4	0.129	0.258	"	"	"	0.257	98	"				
Chromium	90.6	0.644	1.29	"	"	"	18.9	111	"				
Copper	95.0	0.644	1.29	"	"	"	25.8	107	"				
Lead	74.2	0.129	0.258	"	"	"	9.92	100	"				
Manganese	942	0.644	1.29	"	"	"	1180	-370	"			Q-03	
Mercury	1.27	0.0515	0.103	"	"	1.29	ND	98	"				
Zinc	149	2.58	5.15	"	"	64.4	72.1	119	"				

Apex Laboratories

Dund by Smil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Page 24 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co

Project: Evraz OR Steel

4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathan Cutler10/14/15 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5100140 - To	otal Solids (Dry We	eight)					Soil					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dund by Smil

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction Co Project: Evraz OR Steel

4721 Northwest Drive Project Number: Evraz OR Steel Reported:
Bellingham, WA 98226 Project Manager: Nathan Cutler 10/14/15 13:27

SAMPLE PREPARATION INFORMATION

		P	olychlorinated Biphe	enyls by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5100153							
A5I0362-03	Soil	EPA 8082A	09/14/15 14:00	10/06/15 12:55	10.61g/5mL	10g/5mL	0.94
		C	rganochlorine Pestid	cides by EPA 8081B			
Prep: EPA 3546/36	40A (GPC)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5100206							
A5I0362-03RE1	Soil	EPA 8081B	09/14/15 14:00	10/06/15 12:52	11.29g/10mL	10g/5mL	1.77
		Semi	ivolatile Organic Con	npounds by EPA 8270	D		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5100135							
A5I0362-03RE1	Soil	EPA 8270D	09/14/15 14:00	10/06/15 07:42	14.82g/2mL	15g/2mL	1.01
			Total Metals by EP	A 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5100166							
A5I0362-03	Soil	EPA 6020A	09/14/15 14:00	10/06/15 17:02	0.506g/50mL	0.5g/50mL	0.99
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5100140							
A5I0362-03	Soil	EPA 8000C	09/14/15 14:00	10/06/15 09:24	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

Dund to buil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 26 of 29

Darrell Auvil, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction CoProject:EvrazOR Steel4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathar Cutler10/14/15 13:27

Notes and Definitions

Qualifiers:

C-05	Extract has undergone a GPC (Gel-Permeation Chromatography) cleanup per EPA 3640A. Reporting levels may be raised due to dilution
	necessary for cleanup. Sample Final Volume includes the GPC dilution factor, see the Prep page for details.

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- H-02 This sample was extracted outside of the recommended holding time.
- H-06 This sample was received, or the analysis requested, outside the recommended holding time.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to $\frac{1}{2}$ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Project Manager

Dunell by frail

Page 27 of 29

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Strider Construction CoProject:EvrazOR Steel4721 Northwest DriveProject Number:EvrazOR SteelReported:Bellingham, WA 98226Project Manager:Nathar Cutler10/14/15 13:27

--- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by hail

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone

Bellingham, WA 98226 Strider Construction Co 4721 Northwest Drive

Lab# A5 I 0362 coc 1 of 1

Project: Evraz OR Steel

Project Manager: Nathan Cutler

10/14/15 13:27 Reported:

Project Number: Evraz OR Steel

503-718-0333 Fax

12232 S.W. Garden Place, Tigard, C	R 9722	3 Ph: 50	3-718-2	323 Fc	x: 503	718	-0333	1					3														
company Strider Construction	11 CC	1,	Project l	Mgr:/	Tath	aΛ	Go	Hei				Proje	ct Na	me: S	SU	ra s	(K Stee			Proje						
Address: 472 Northurst			inahar	n, W+	4 9	820	26		Phon	e: 36	0-7	34-	170	195	Offic Fex:	C 36	11-38	30-1234	Emai	l: //C	tha	no	Ost	ridet	COME	fruct	1000
Sampled by: Andrew Halm	stad	//	V															S REQUEST							<u> </u>		
Site Location: OR WA Other: SAMPLE ID	LAB ID#	DATE	TIME	MATRIX	SOF CONTAINERS	NWTPH-HCID	NWTPH-Dx	NWTPH-Gx	8260 VOC	8260 RBDM VOCs	8260 BTEX	8270 SVOC	8270 SIM PAHS	(8082 PCBs(8087A)	600 TTO	RCRA Metals (8)	TCLP Metals (8)	Al, Sb, As, Bn, Be, Cd, Cn, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Tt, V, Zn TOTAL DISS TCLP		1200-Z	EPA 1613 DIDKING	(5PH 80P1 B	× 0109 +43	(SPA 447/Mercur			
5/1-700501/		9/14/15	1400	Stil	25							X		×			_				\geq	×	X	×			_
SH-Compatt			1415	soi	37				_			X		×							×		$\hat{}$	×		-	
					*VII																			-			1
						_																					-
3																											
						_																					
Normal Turn Around Time (TAT) = 7-10 B	usiness (Days		YES		(NO/					SPE	CIAL	INST	RUC	TION	S: 🐴	Mei	tals 6010	1 ino	lude	1:01	Seni	0,00	drice	m, d	Mari	UM
TAT Requested (circle)	1 Day	y	2 Day		3 Day		7	0	0		-0	.A. OF	cito	. In	in c	t Na	l.	lak 6010 is 1;4, Lby	i	<i>.</i>	ZIII	10	KON	11114	nguno	1) 1)	
	4 DA	Y	5 DAY		Other	r: <u>/{</u> (Kh-	1151	۲			mμ	JIIC	W 1 1 V	1 0	MILA	ו קעו	660) אוויז מגר	1000 3-1-0	000	amp	WF	TO T	yusa)	IJ	
SAMP RELINQUISHED BY	LES AR	E HELD	FOR 30 I			_					DELI	NOU	CHED	DV.				- xug	I/()	UTV	IV.						\dashv
Signaturey And II kd	Date:	9/14/15			A	5	-	Date:	7/14			_	SHED	, р.				Date:	Signat		ю1.			Date:			
Printed Name: And Rew Hall Time	1	8/	Printed N	ama D	neur	OB	ien	Time:	43	7		ed Nan	ie:					Time:	Printed		e:			Time:			
Company: Theatra Tins	1/ho	1	Company	1	PC	4			,	•	Com	pany:							Comp	any:							

CHAIN OF CUSTODY

Apex Laboratories

APEX LABS

Darrell Auvil, Project Manager

UPPER BEACH

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Friday, July 17, 2015

Terry Rice Columbia West Engineering, Inc. 11917 NE 95th Street Vancouver, WA 98682

RE: Storedahl-Evraz / 100

Enclosed are the results of analyses for work order <u>A5F0817</u>, which was received by the laboratory on 6/26/2015 at 1:17:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

Dund la fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION												
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received								
Livingston G-121 ODOT 1 1/2"	A5F0817-01	Soil	06/26/15 06:45	06/26/15 13:17								
Daybreak G-109 Beach Backfill	A5F0817-02	Soil	06/26/15 06:15	06/26/15 13:17								
Livingston G-121 Berm Backfill	A5F0817-03	Soil	06/26/15 06:48	06/26/15 13:17								

Apex Laboratories

Dund by hail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice07/17/15 16:35

ANALYTICAL CASE NARRATIVE

Work Order: A5F0817

Amended Report Revision 1:

Additional Analysis-

This report supersedes all previous reports.

The final report has been amended to reflect additional metals, by EPA 6020 method, to samples:

Livingston G-121 ODOT 1 1/2" (Apex ID: A5F0817-01) Livingston G-121 Berm Backfill (Apex ID: A5F0817-03)

Darrell Auvil Project Manager 7/16/2015

Apex Laboratories

Quand la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

		Polyc	hlorinated E	Siphenyls by EP	A 8082A			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Livingston G-121 ODOT 1 1/2" (A	5F0817-01)		Matrix: So	il Ba	tch: 50608	41		C-0
Aroclor 1016	ND		10.3	ug/kg dry	1	06/29/15 20:13	EPA 8082A	
Aroclor 1221	ND		10.3	"	"	"	"	
Aroclor 1232	ND		10.3	"	"	"	"	
Aroclor 1242	ND		10.3	**	"		"	
Aroclor 1248	ND		10.3	"	"	"	"	
Aroclor 1254	ND		10.3	"	"	"	"	
Aroclor 1260	ND		10.3			"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 87 %	Limits: 72-126%		"	"	
Daybreak G-109 Beach Backfill (A	(5F0817-02)		Matrix: So	il Ba	tch: 50608	41		C-0
Aroclor 1016	ND		10.2	ug/kg dry	1	06/29/15 20:50	EPA 8082A	
Aroclor 1221	ND		10.2	•			"	
Aroclor 1232	ND		10.2	"	"	"	"	
Aroclor 1242	ND		10.2	**	"		"	
Aroclor 1248	ND		10.2	"	"	"	"	
Aroclor 1254	ND		10.2	"	"	"	"	
Aroclor 1260	ND		10.2	"		"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 81 %	Limits: 72-126%	"	"	"	
Livingston G-121 Berm Backfill (A	A5F0817-03)		Matrix: So	il Ba	tch: 50608	41		C-0
Aroclor 1016	ND		10.5	ug/kg dry	1	06/29/15 21:26	EPA 8082A	
Aroclor 1221	ND		10.5	"	"		"	
Aroclor 1232	ND		10.5	"	"	"	"	
Aroclor 1242	ND		10.5		"	"	"	
Aroclor 1248	ND		10.5		"	"	"	
Aroclor 1254	ND		10.5		"	"	"	
Aroclor 1260	ND		10.5			"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 87 %	Limits: 72-126%	"		"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil For Darwin Thomas, Business Development Director

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
Livingston G-121 ODOT 1 1/2"	(A5F0817-01)		Matrix: Soil	В	atch: 506086	63						
Aldrin	ND		4.82	ug/kg dry	5	07/02/15 14:53	EPA 8081B					
alpha-BHC	ND		4.82		"	"	"					
beta-BHC	ND		4.82		"	"	"					
delta-BHC	ND		4.82	"	"	"	"					
gamma-BHC (Lindane)	ND		4.82	"	"	"	"					
cis-Chlordane	ND		4.82	"	"	"	"					
trans-Chlordane	ND		4.82		"	"	"					
4,4'-DDD	ND		4.82		"	"	"					
4,4'-DDE	ND		4.82	"	"	"	"					
4,4'-DDT	ND		4.82		"	"	"					
Dieldrin	ND		4.82		"	"	"					
Endosulfan I	ND		4.82	"	"	"	"					
Endosulfan II	ND		4.82		"	"	"					
Endosulfan sulfate	ND		4.82		"	"	"					
Endrin	ND		4.82	"	"	"	"					
Endrin Aldehyde	ND		4.82	"	"	"	"					
Endrin ketone	ND		4.82		"	"	"					
Heptachlor	ND		4.82		"	"	"					
Heptachlor epoxide	ND		4.82	"	"	"	"					
Methoxychlor	ND		14.5	"	"	"	"	Q-31				
Chlordane (Technical)	ND		145	"	"	"	"					
Toxaphene (Total)	ND		145	"	"	"	"					
Surrogate: 2,4,5,6-TCMX (Surr)		R	ecovery: 71 %	Limits: 42-129 %	"	"						

91 % Limits: 65-151 %

Apex Laboratories

Decachlorobiphenyl (Surr)

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
Daybreak G-109 Beach Backfill	(A5F0817-02)		Matrix: Soil	В	atch: 506086	63					
Aldrin	ND		4.42	ug/kg dry	5	07/02/15 15:30	EPA 8081B				
alpha-BHC	ND		4.42		"	"	"				
beta-BHC	ND		4.42		"	"	"				
delta-BHC	ND		4.42		"	"	"				
gamma-BHC (Lindane)	ND		4.42		"	"	"				
cis-Chlordane	ND		4.42		"	"	"				
trans-Chlordane	ND		4.42		"	"	"				
4,4'-DDD	ND		4.42		"	"	"				
4,4'-DDE	ND		4.42		"	"	"				
4,4'-DDT	ND		4.42		"	"	"				
Dieldrin	ND		4.42		"	"	"				
Endosulfan I	ND		4.42		"	"	"				
Endosulfan II	ND		4.42		"	"	"				
Endosulfan sulfate	ND		4.42		"	"	"				
Endrin	ND		4.42		"	"	"				
Endrin Aldehyde	ND		4.42		"	"	"				
Endrin ketone	ND		4.42		"	"	"				
Heptachlor	ND		4.42		"	"	"				
Heptachlor epoxide	ND		4.42		"	"	"				
Methoxychlor	ND		13.3		"	"	"	Q-31			
Chlordane (Technical)	ND		133		"	"	"				
Toxaphene (Total)	ND		133	"	"	"	"				
Surrogate: 2,4,5,6-TCMX (Surr)		R	ecovery: 76 %	Limits: 42-129 %	"	"	"				
Decachlorobiphenyl (Su	77)		87 %	Limits: 65-151 %	"		"				

Apex Laboratories

Dund by hail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B											
			Reporting	<u> </u>							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
Livingston G-121 Berm Backfill	(A5F0817-03)		Matrix: Soil	В	atch: 506086	33					
Aldrin	ND		4.66	ug/kg dry	5	07/02/15 15:48	EPA 8081B				
alpha-BHC	ND		4.66		"	"	"				
beta-BHC	ND		4.66		"	"	"				
delta-BHC	ND		4.66		"	"	"				
gamma-BHC (Lindane)	ND		4.66		"	"	"				
cis-Chlordane	ND		4.66		"	"	"				
trans-Chlordane	ND		4.66		"	"	"				
4,4'-DDD	ND		4.66		"	"	"				
4,4'-DDE	ND		4.66		"	"	"				
4,4'-DDT	ND		4.66		"	"	"				
Dieldrin	ND		4.66		"	"	"				
Endosulfan I	ND		4.66		"	"	"				
Endosulfan II	ND		4.66		"	"	"				
Endosulfan sulfate	ND		4.66		"	"	"				
Endrin	ND		4.66		"	"	"				
Endrin Aldehyde	ND		4.66		"	"	"				
Endrin ketone	ND		4.66		"	"	"				
Heptachlor	ND		4.66		"	"	"				
Heptachlor epoxide	ND		4.66		"	"	"				
Methoxychlor	ND		14.0		"	"	"	Q-31			
Chlordane (Technical)	ND		140			"	"				
Toxaphene (Total)	ND		140	"	"	"	"				
Surrogate: 2,4,5,6-TCMX (Surr)		R	lecovery: 64 %	Limits: 42-129%	"	"	"				

82 % Limits: 65-151 %

Apex Laboratories

Decachlorobiphenyl (Surr)

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
ivingston G-121 ODOT 1 1/2"	(A5F0817-01RE2)		Matrix: Soil	В	atch: 50608	87						
Acenaphthene	ND		2.79	ug/kg dry	1	07/01/15 11:19	EPA 8270D					
Acenaphthylene	ND		2.79	"	"	"	"					
Anthracene	ND		2.79	"	"	"	"					
Benz(a)anthracene	ND		2.79		"	"	"					
Benzo(a)pyrene	ND		4.18		"	"	"					
Benzo(b)fluoranthene	ND		4.18	"	"	"	"					
Benzo(k)fluoranthene	ND		4.18	"	"		"					
Benzo(g,h,i)perylene	ND		2.79	"	"		"					
Chrysene	ND		2.79	"	"		"					
Dibenz(a,h)anthracene	ND		2.79	"	"		"					
Fluoranthene	ND		2.79	"	"		"					
Fluorene	ND		2.79	"	"	"	"					
Indeno(1,2,3-cd)pyrene	ND		2.79	"	"	"	"					
1-Methylnaphthalene	ND		5.57	"	"	"	"					
2-Methylnaphthalene	ND		5.57	"	"	"	"					
Naphthalene	ND		5.57	"	"	"	"					
Phenanthrene	ND		2.79	"	"		"					
Pyrene	ND		2.79	"	"		"					
Carbazole	ND		4.18	"	"		"					
Dibenzofuran	ND		2.79	"	"		"					
4-Chloro-3-methylphenol	ND		27.9	"	"		"					
2-Chlorophenol	ND		13.9	"	"		"					
2,4-Dichlorophenol	ND		13.9	"	"		"					
2,4-Dimethylphenol	ND		13.9	"	"		"					
2,4-Dinitrophenol	ND		69.7	"	"		"					
4,6-Dinitro-2-methylphenol	ND		69.7	"	"		"					
2-Methylphenol	ND		6.97	"	"		"					
3+4-Methylphenol(s)	ND		6.97	"	"		"					
2-Nitrophenol	ND		27.9	"	"		"					
4-Nitrophenol	ND		27.9	"	"		"					
Pentachlorophenol (PCP)	ND		27.9	"	"		"					
Phenol	ND		5.57	"	"		"					
2,3,4,6-Tetrachlorophenol	ND		13.9	"	"		"					
2,3,5,6-Tetrachlorophenol	ND		14.6	"	"							
2,4,5-Trichlorophenol	ND		13.9	"			"					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

	S	emivola	tile Organic Co	mpounds b	y EPA 8270	D		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Livingston G-121 ODOT 1 1/2"	(A5F0817-01RE2)		Matrix: Soil	В	Batch: 506088	87		
2,4,6-Trichlorophenol	ND		13.9	ug/kg dry	1	"	EPA 8270D	
Bis(2-ethylhexyl)phthalate	ND		41.8	"	"	"	"	
Butyl benzyl phthalate	ND		27.9	"	"	"	"	
Diethylphthalate	ND		27.9	"	"	"	"	
Dimethylphthalate	ND		27.9	"	"	"	"	
Di-n-butylphthalate	ND		27.9	"	"	"	"	
Di-n-octyl phthalate	ND		27.9	"	"	"	"	
N-Nitrosodimethylamine	ND		6.97	"	"	"	"	
N-Nitroso-di-n-propylamine	ND		6.97	"	"	"	"	
N-Nitrosodiphenylamine	ND		6.97	"	"	"	"	
Bis(2-Chloroethoxy) methane	ND		6.97	"	"	"	"	
Bis(2-Chloroethyl) ether	ND		6.97	"	"	"	"	
Bis(2-Chloroisopropyl) ether	ND		6.97	"	"		"	
Hexachlorobenzene	ND		2.79	"	"	"	"	
Hexachlorobutadiene	ND		6.97	"	"	"	"	
Hexachlorocyclopentadiene	ND		13.9	"	"	"	"	
Hexachloroethane	ND		6.97	"	"	"	"	
2-Chloronaphthalene	ND		2.79	"	"	"	"	
1,2-Dichlorobenzene	ND		6.97	"	"	"	"	
1,3-Dichlorobenzene	ND		6.97		"	"	"	
1,4-Dichlorobenzene	ND		6.97		"	"	"	
1,2,4-Trichlorobenzene	ND		6.97		"	"	"	
4-Bromophenyl phenyl ether	ND		6.97		"		"	
4-Chlorophenyl phenyl ether	ND		6.97		"		"	
Aniline	ND		13.9		"		"	
4-Chloroaniline	ND		6.97		"			
2-Nitroaniline	ND		55.7					
3-Nitroaniline	ND		55.7	"				
4-Nitroaniline	ND		55.7	"				
Nitrobenzene	ND		27.9					
2,4-Dinitrotoluene	ND		27.9					
2.6-Dinitrotoluene	ND		27.9		"		"	
Benzoic acid	ND		348					
Benzyl alcohol	ND		13.9					
Isophorone	ND		6.97					
20 photone	1112	_	0.51					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
Livingston G-121 ODOT 1 1/2"	(A5F0817-01RE2)		Matrix: Soil	В	atch: 506088	37						
Azobenzene (1,2-DPH)	ND		6.97	ug/kg dry	1	"	EPA 8270D					
Bis(2-Ethylhexyl) adipate	ND		69.7		"	"	"					
3,3'-Dichlorobenzidine	ND		27.9		"	"	"					
1,2-Dinitrobenzene	ND		69.7	"	"	"	"					
1,3-Dinitrobenzene	ND		69.7	"	"	"	"					
1,4-Dinitrobenzene	ND		69.7	"	"	"	"					
Pyridine	ND		13.9	"	"	"	"					
Surrogate: Nitrobenzene-d5 (Surr))		Recovery: 76 %	Limits: 37-122 %	"							
2-Fluorobiphenyl (Surr	r)		65 %	Limits: 44-115 %	"							
Phenol-d6 (Surr)			71 %	Limits: 33-122 %	"							
p-Terphenyl-d14 (Surr))		82 %	Limits: 54-127%	"		"					
2-Fluorophenol (Surr)			80 %	Limits: 35-115 %	"		"	Q-41				
2,4,6-Tribromophenol	(Surr)		65 %	Limits: 39-132 %	"		"					
Daybreak G-109 Beach Backfill	I (A5F0817-02)		Matrix: Soil	В	atch: 506088	37						
Acenaphthene	ND		2.74	ug/kg dry	1	07/01/15 12:35	EPA 8270D					
Acenaphthylene	ND		2.74		"		"					
Anthracene	ND		2.74		"	"	"					
Benz(a)anthracene	ND		2.74		"	"	"					
Benzo(a)pyrene	ND		4.10		"	"	"					
Benzo(b)fluoranthene	ND		4.10		"	"	"					
Benzo(k)fluoranthene	ND		4.10		"	"	"					
Benzo(g,h,i)perylene	ND		2.74		"	"	"					
Chrysene	ND		2.74		"	"	"					
Dibenz(a,h)anthracene	ND		2.74		"	"	"					
Fluoranthene	ND		2.74		"	"	"					
Fluorene	ND		2.74		"	"	"					
Indeno(1,2,3-cd)pyrene	ND		2.74		"	"	"					
1-Methylnaphthalene	ND		5.46		"	"	"					
2-Methylnaphthalene	ND		5.46		"							
Naphthalene	ND		5.46		"	"	"					
Phenanthrene	ND		2.74		"	"	"					
Pyrene	ND		2.74		"		"					
Carbazole	ND		4.10		"		"					
Dibenzofuran	ND		2.74		"		"					
4-Chloro-3-methylphenol	ND		27.4				"					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

	,	Semivola	tile Organic Co	mpounds by	y EPA 82/0	D		
	_		Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Daybreak G-109 Beach Backfill	(A5F0817-02)		Matrix: Soil	В	atch: 50608	87		
2-Chlorophenol	ND		13.6	ug/kg dry	1	"	EPA 8270D	
2,4-Dichlorophenol	ND		13.6	"	"	"	"	
2,4-Dimethylphenol	ND		13.6		"	"	"	
2,4-Dinitrophenol	ND		68.3		"	"	"	
4,6-Dinitro-2-methylphenol	ND		68.3		"	"	"	
2-Methylphenol	ND		6.83		"	"	"	
3+4-Methylphenol(s)	ND		6.83				"	
2-Nitrophenol	ND		27.4	"	"		"	
4-Nitrophenol	ND		27.4	"			"	
Pentachlorophenol (PCP)	ND		27.4	"	"	"	"	
Phenol	ND		5.46	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND		13.6	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND		14.3		"		"	
2,4,5-Trichlorophenol	ND		13.6		"		"	
2,4,6-Trichlorophenol	ND		13.6		"	"	"	
Bis(2-ethylhexyl)phthalate	ND		41.0		"	"	"	
Butyl benzyl phthalate	ND		27.4				"	
Diethylphthalate	ND		27.4				"	
Dimethylphthalate	ND		27.4				"	
Di-n-butylphthalate	ND		27.4				"	
Di-n-octyl phthalate	ND		27.4	"			"	
N-Nitrosodimethylamine	ND		6.83	"			"	
N-Nitroso-di-n-propylamine	ND		6.83	"				
N-Nitrosodiphenylamine	ND		6.83	"			"	
Bis(2-Chloroethoxy) methane	ND		6.83	"	"		"	
Bis(2-Chloroethyl) ether	ND		6.83	"	"		"	
Bis(2-Chloroisopropyl) ether	ND		6.83	"				
Hexachlorobenzene	ND		2.74	"				
Hexachlorobutadiene	ND		6.83	"				
Hexachlorocyclopentadiene	ND		13.6	"				
Hexachloroethane	ND		6.83	"				
2-Chloronaphthalene	ND		2.74	"			"	
1,2-Dichlorobenzene	ND		6.83				"	
1,3-Dichlorobenzene	ND		6.83					
1,4-Dichlorobenzene	ND		6.83					

Apex Laboratories

Quant to famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes				
aybreak G-109 Beach Backfill (A5F0817-02)		Matrix: Soil	В.	atch: 506088	37						
1,2,4-Trichlorobenzene	ND		6.83	ug/kg dry	1	"	EPA 8270D					
4-Bromophenyl phenyl ether	ND		6.83	"	"	"	"					
4-Chlorophenyl phenyl ether	ND		6.83	"	"	"	"					
Aniline	ND		13.6	"	"	"	"					
4-Chloroaniline	ND		6.83	"	"	"	"					
2-Nitroaniline	ND		54.6	"	"	"	"					
3-Nitroaniline	ND		54.6	"	"	"	"					
4-Nitroaniline	ND		54.6	"	"	"	"					
Nitrobenzene	ND		27.4	"	"	"	"					
2,4-Dinitrotoluene	ND		27.4		"		"					
2,6-Dinitrotoluene	ND		27.4	"	"	"	"					
Benzoic acid	ND		341	"	"	"	"					
Benzyl alcohol	ND		13.6		"	"	"					
Isophorone	ND		6.83	"	"	"	"					
Azobenzene (1,2-DPH)	ND		6.83	"	"	"	"					
Bis(2-Ethylhexyl) adipate	ND		68.3	"	"	"	"					
3,3'-Dichlorobenzidine	ND		27.4	"	"	"	"					
1,2-Dinitrobenzene	ND		68.3	"	"	"	"					
1,3-Dinitrobenzene	ND		68.3	"	"	"	"					
1,4-Dinitrobenzene	ND		68.3		"	"	"					
Pyridine	ND		13.6	"	"	"	"					
Surrogate: Nitrobenzene-d5 (Surr)		Re	ecovery: 78 %	Limits: 37-122%	"		"					
2-Fluorobiphenyl (Surr)			65 %	Limits: 44-115 %	"		"					
Phenol-d6 (Surr)			64 %	Limits: 33-122 %	"		"					
p-Terphenyl-d14 (Surr)			84 %	Limits: 54-127 %	"		*					
2-Fluorophenol (Surr)			74 %	Limits: 35-115 %				Q-41				
2,4,6-Tribromophenol (Su	77)		68 %	Limits: 39-132 %	"		"	_				

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
Livingston G-121 Berm Backfil	II (A5F0817-03)		Matrix: Soil	В	atch: 50608	87						
Acenaphthene	ND		2.82	ug/kg dry	1	07/01/15 13:13	EPA 8270D					
Acenaphthylene	ND		2.82	"	"	"	"					
Anthracene	ND		2.82		"	"	"					
Benz(a)anthracene	ND		2.82		"	"	"					
Benzo(a)pyrene	ND		4.23		"	"	"					
Benzo(b)fluoranthene	ND		4.23	"	"	"	"					
Benzo(k)fluoranthene	ND		4.23		"	"	"					
Benzo(g,h,i)perylene	ND		2.82	"	"	"	"					
Chrysene	ND		2.82		"	"	"					
Dibenz(a,h)anthracene	ND		2.82	"		"	"					
Fluoranthene	ND		2.82		"	"	"					
Fluorene	ND		2.82	"	"		"					
Indeno(1,2,3-cd)pyrene	ND		2.82		"	"	"					
1-Methylnaphthalene	ND		5.64		"	"	"					
2-Methylnaphthalene	ND		5.64		"	"	"					
Naphthalene	ND		5.64	"	"		"					
Phenanthrene	ND		2.82		"		"					
Pyrene	ND		2.82		"	"	"					
Carbazole	ND		4.23		"	"	"					
Dibenzofuran	ND		2.82		"	"	"					
4-Chloro-3-methylphenol	ND		28.2		"	"	"					
2-Chlorophenol	ND		14.1		"	"	"					
2,4-Dichlorophenol	ND		14.1	"	"	"	"					
2,4-Dimethylphenol	ND		14.1	"		"	"					
2,4-Dinitrophenol	ND		70.5	"		"	"					
4,6-Dinitro-2-methylphenol	ND		70.5	"	"	"	"					
2-Methylphenol	ND		7.05	"		"	"					
3+4-Methylphenol(s)	ND		7.05	"	"	"	"					
2-Nitrophenol	ND		28.2	"	"	"	"					
4-Nitrophenol	ND		28.2	"	"	"	"					
Pentachlorophenol (PCP)	ND		28.2	"	"	"	"					
Phenol	ND		5.64	"	"	"	"					
2,3,4,6-Tetrachlorophenol	ND		14.1	"		"	"					
2,3,5,6-Tetrachlorophenol	ND		14.8	"		"	"					
2,4,5-Trichlorophenol	ND		14.1	"		"	"					
-												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 13 of 43

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

	<u> </u>	Semivola	tile Organic Co	mpounds b	y EPA 8270)D		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
ivingston G-121 Berm Backfill	(A5F0817-03)		Matrix: Soil	В	atch: 50608	87		
2,4,6-Trichlorophenol	ND		14.1	ug/kg dry	1	"	EPA 8270D	
Bis(2-ethylhexyl)phthalate	ND		42.3	"	"	"	"	
Butyl benzyl phthalate	ND		28.2		"	"	"	
Diethylphthalate	ND		28.2		"	"	"	
Dimethylphthalate	ND		28.2		"	"	"	
Di-n-butylphthalate	ND		28.2	"	"	"	"	
Di-n-octyl phthalate	ND		28.2	"		"	"	
N-Nitrosodimethylamine	ND		7.05	"	"	"	"	
N-Nitroso-di-n-propylamine	ND		7.05	"		"	"	
N-Nitrosodiphenylamine	ND		7.05	"		"	"	
Bis(2-Chloroethoxy) methane	ND		7.05	"	"	"	"	
Bis(2-Chloroethyl) ether	ND		7.05	"	"	"	"	
Bis(2-Chloroisopropyl) ether	ND		7.05		"	"	"	
Hexachlorobenzene	ND		2.82				"	
Hexachlorobutadiene	ND		7.05		"	"	"	
Hexachlorocyclopentadiene	ND		14.1		"	"	"	
Hexachloroethane	ND		7.05		"	"	"	
-Chloronaphthalene	ND		2.82		"	"	"	
,2-Dichlorobenzene	ND		7.05	"		"	"	
1,3-Dichlorobenzene	ND		7.05	"	"		"	
1,4-Dichlorobenzene	ND		7.05	"	"		"	
1,2,4-Trichlorobenzene	ND		7.05	"	"		"	
4-Bromophenyl phenyl ether	ND		7.05	"			"	
4-Chlorophenyl phenyl ether	ND		7.05	"	"		"	
Aniline	ND		14.1	"	"		"	
4-Chloroaniline	ND		7.05	"	"		"	
2-Nitroaniline	ND		56.4	"			"	
3-Nitroaniline	ND		56.4	"			"	
-Nitroaniline	ND		56.4	"		"	"	
Vitrobenzene	ND		28.2	"				
,4-Dinitrotoluene	ND		28.2	"		"		
2,6-Dinitrotoluene	ND		28.2	"		"		
Benzoic acid	ND		352	"				
Benzyl alcohol	ND		14.1	"		"		
sophorone	ND		7.05				"	

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

	٤	Semivolati	le Organic (Compounds by	y EPA 8270	ID .		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Livingston G-121 Berm Backfill(A	5F0817-03)		Matrix: Soil	I Bi	atch: 506088	87		
Azobenzene (1,2-DPH)	ND		7.05	ug/kg dry	1	"	EPA 8270D	
Bis(2-Ethylhexyl) adipate	ND		70.5		"	"	"	
3,3'-Dichlorobenzidine	ND		28.2		"	"	"	Q-42
1,2-Dinitrobenzene	ND		70.5		"	"	"	
1,3-Dinitrobenzene	ND		70.5		"		"	
1,4-Dinitrobenzene	ND		70.5	"	"	"	"	
Pyridine	ND		14.1			"	"	
Surrogate: Nitrobenzene-d5 (Surr)		Rec	ecovery: 62 %	Limits: 37-122%				
2-Fluorobiphenyl (Surr)			51 %	Limits: 44-115 %	"		"	
Phenol-d6 (Surr)			53 %	Limits: 33-122 %	"		"	
p-Terphenyl-d14 (Surr)			70 %	Limits: 54-127%	"			
2-Fluorophenol (Surr)			71 %	Limits: 35-115 %	"		"	Q-41
2,4,6-Tribromophenol (Surr)	•		59 %	Limits: 39-132 %	"		"	

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

		То	tal Metals by E	PA 6020 (ICI	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Livingston G-121 ODOT 1 1/2" (A5F0817-01)		Matrix: Soil					
Batch: 5060840								
Arsenic	1.02		1.02	mg/kg dry	10	07/02/15 03:22	EPA 6020A	
Barium	41.8		1.02	"	"	"	"	
Chromium	ND		4.06	"	"	"	"	
Copper	98.2		1.02		"	"	"	
Lead	2.42		0.203	"	"	"	"	
Manganese	204		1.02	"	"	"	"	
Mercury	ND		0.0813	"	"	"	"	
Selenium	ND		2.03	"	"	"	"	
Silver	ND		0.203	"	"	"	"	
Zinc	30.0		4.06	"	"	"	"	
Livingston G-121 ODOT 1 1/2" (A5F0817-01RE1)		Matrix: Soil					
Batch: 5060840								
Cadmium	0.234		0.203	mg/kg dry	10	07/06/15 13:12	EPA 6020A	
Daybreak G-109 Beach Backfill	(A5F0817-02)		Matrix: Soil					
Batch: 5060840								
Arsenic	59.0		1.02	mg/kg dry	10	07/02/15 03:26	EPA 6020A	
Barium	74.4		1.02	"	"	"	"	
Chromium	9.69		4.09	"	"	"	"	
Lead	3.47		0.205	"	"	"	"	
Mercury	ND		0.0818	••	"	"	"	
Selenium	ND		2.05	"	"	"	"	
Silver	ND		0.205	"	"	"	"	
Daybreak G-109 Beach Backfill	(A5F0817-02RE1)		Matrix: Soil					
Batch: 5060840								
Cadmium	ND		0.205	mg/kg dry	10	07/06/15 13:24	EPA 6020A	
Daybreak G-109 Beach Backfill	(A5F0817-02RE2)		Matrix: Soil					
Batch: 5070183								
Arsenic	4.45		0.995	mg/kg dry	10	07/09/15 14:26	EPA 6020A	
Barium	68.2		0.995	"	"	"	"	
Cadmium	ND		0.995	"	"	"	"	
Chromium	9.51		0.995	"	"	"	"	
Lead	3.28		0.995	"	"	"	"	
Mercury	ND		0.0796	"	"	"	"	

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

		То	tal Metals by E	PA 6020 (ICI	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
Daybreak G-109 Beach Backfill	(A5F0817-02RE2)		Matrix: Soil					
Silver	ND		0.995	mg/kg dry	10	"	EPA 6020A	
Livingston G-121 Berm Backfill	(A5F0817-03)		Matrix: Soil					
Batch: 5060840								
Arsenic	1.65		1.10	mg/kg dry	10	07/02/15 03:31	EPA 6020A	
Barium	59.4		1.10	"	"	"	"	
Chromium	ND		4.42	•	"	"	"	
Copper	24.5		1.10	"	"	"	"	Q-42
Lead	2.50		0.221	"	"	"	"	
Manganese	210		1.10	"	"	"	"	
Mercury	ND		0.0884	"	"		"	
Selenium	ND		2.21	"	"	"	"	
Silver	ND		0.221	"	"	"	"	
Zinc	33.3		4.42	"	"		"	
Livingston G-121 Berm Backfill	(A5F0817-03RE1)		Matrix: Soil					
Batch: 5060840								
Cadmium	ND		0.221	mg/kg dry	10	07/06/15 13:27	EPA 6020A	

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

ANALYTICAL SAMPLE RESULTS

	Percent Dry Weight													
			Reporting											
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes						
Livingston G-121 ODOT 1	1/2" (A5F0817-01)		Matrix: Soil	Ва	atch: 506084	45								
% Solids	95.4		1.00	% by Weight	1	06/30/15 09:34	EPA 8000C							
Daybreak G-109 Beach Ba	ckfill (A5F0817-02)		Matrix: Soil	Ва	atch: 506084	45								
% Solids	97.4		1.00	% by Weight	1	06/30/15 09:34	EPA 8000C							
Livingston G-121 Berm Ba	ckfill (A5F0817-03)		Matrix: Soil	Ва	atch: 506084	45								
% Solids	94.5		1.00	% by Weight	1	06/30/15 09:34	EPA 8000C							

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bipl	nenyls	by EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060841 - EPA 3546							Soi	il				
Blank (5060841-BLK1)				Prepa	red: 06	/29/15 10:42	Analyzed:	06/29/15 17	7:48			C-(
EPA 8082A												
Aroclor 1016	ND		9.09	ug/kg wet	1							
Aroclor 1221	ND		9.09	"	"							
Aroclor 1232	ND		9.09	"	"							
Aroclor 1242	ND		9.09	"	"							
Aroclor 1248	ND		9.09	"	"							
Aroclor 1254	ND		9.09	"	"							
Aroclor 1260	ND		9.09	"	"							
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 104 %	Limits: 72-12	26%	Dilı	ution: 1x					
LCS (5060841-BS1)				Prepa	red: 06	/29/15 10:42	Analyzed:	06/29/15 18	3:06			C-0
EPA 8082A												
Aroclor 1016	186		10.0	ug/kg wet	1	250		75	47-134%			
Aroclor 1260	244		10.0	"	"	"		98	53-140%			
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 109 %	Limits: 72-12	26%	Dila	ution: 1x					
Matrix Spike (5060841-MS1)				Prepa	red: 06	/29/15 10:42	Analyzed:	06/29/15 22	2:03			C-0
QC Source Sample: Livingston G-12	l Berm Back	fill (A5F08	17-03)									
EPA 8082A												
Aroclor 1016	172		10.6	ug/kg dry	1	264	ND	65	47-134%			
Aroclor 1260	215		10.6	"	"	"	ND	81	53-140%			
Surr: Decachlorobiphenyl (Surr)		Re	covery: 90 %	Limits: 72-12	26%	Dilı	ution: 1x					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	nlorine Pes	ticides	by EPA 80)81B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060863 - EPA 3546							Soi	l				
Blank (5060863-BLK1)				Prepa	ared: 06/3	30/15 06:55	Analyzed:	07/02/15 1	14:16			
EPA 8081B												
Aldrin	ND		0.833	ug/kg wet	1							
alpha-BHC	ND		0.833	"	"							
beta-BHC	ND		0.833	"	"							
delta-BHC	ND		0.833	"	"							
gamma-BHC (Lindane)	ND		0.833	"	"							
cis-Chlordane	ND		0.833	"	"							
trans-Chlordane	ND		0.833	"	"							
4,4'-DDD	ND		0.833	"	"							
4,4'-DDE	ND		0.833	"	"							
4,4'-DDT	ND		0.833	"	"							
Dieldrin	ND		0.833	"	"							
Endosulfan I	ND		0.833	"	"							
Endosulfan II	ND		0.833	"	"							
Endosulfan sulfate	ND		0.833	"	"							
Endrin	ND		0.833	"	"							
Endrin Aldehyde	ND		0.833	"	"							
Endrin ketone	ND		0.833	"	"							
Heptachlor	ND		0.833	"	"							
Heptachlor epoxide	ND		0.833	"	"							
Methoxychlor	ND		2.50	"	"							Q-31
Chlordane (Technical)	ND		25.0	"	"							
Toxaphene (Total)	ND		25.0	"								
Surr: 2,4,5,6-TCMX (Surr) Decachlorobiphenyl (Surr)		R	ecovery: 99 % 105 %	Limits: 42-1 65-1	29 % 51 %	Dila	ution: 1x					
LCS (5060863-BS1)				Prepa	ared: 06/3	30/15 06:55	Analyzed:	07/02/15 1	14:35			
EPA 8081B												
Aldrin	44.7		1.00	ug/kg wet	1	50.0		89	45-136%			
alpha-BHC	55.9		1.00	"	"	"		112	45-137%			
beta-BHC	53.0		1.00	"	"	"		106	50-136%			
delta-BHC	49.0		1.00	"	"	"		98	47-139%			

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060863 - EPA 3546							Soi					
LCS (5060863-BS1)				Prep	ared: 06/	30/15 06:55	Analyzed:	07/02/15 14	4:35			
gamma-BHC (Lindane)	54.6		1.00	"	"	"		109	49-135%			
cis-Chlordane	52.3		1.00	"	"	"		105	54-133%			
trans-Chlordane	52.8		1.00	"	"	"		106	53-135%			
4,4'-DDD	52.8		1.00	"	"	"		106	56-139%			
4,4'-DDE	54.4		1.00	"	"	"		109	56-134%			
4,4'-DDT	53.8		1.00	"	"	"		108	50-141%			Q-31
Dieldrin	55.8		1.00	"	"	"		112	56-136%			
Endosulfan I	53.2		1.00	"	"	"		106	52-132%			
Endosulfan II	58.2		1.00	"	"	"		116	53-134%			
Endosulfan sulfate	57.9		1.00	"	"	"		116	55-136%			
Endrin	57.8		1.00	"	"	"		116	56-140%			
Endrin Aldehyde	52.6		1.00	"	"	"		105	35-137%			
Endrin ketone	55.3		1.00	"	"	"		111	55-136%			Q-41
Heptachlor	52.6		1.00	"	"	"		105	47-136%			
Heptachlor epoxide	52.8		1.00	"	"	"		106	52-136%			
Methoxychlor	55.4		3.00	"	"	"		111	52-143%			Q-31
Surr: 2,4,5,6-TCMX (Surr)		Re	ecovery: 94 %	Limits: 42-1	29 %	Dilu	ution: lx					
Decachlorobiphenyl (Surr)			101 %	65-1	51 %		"					
Duplicate (5060863-DUP1)				Prep	ared: 06/	30/15 06:55	Analyzed:	07/02/15 15	5:11			
QC Source Sample: Livingston G-12	21 ODOT 1 1/	/2" (A5F08	17-01)									
EPA 8081B												
Aldrin	ND		4.93	ug/kg dry	5		ND				30%	
alpha-BHC	ND		4.93	"	"		ND				30%	
beta-BHC	ND		4.93	"	"		ND				30%	
delta-BHC	ND		4.93	"	"		ND				30%	
gamma-BHC (Lindane)	ND		4.93	"	"		ND				30%	
cis-Chlordane	ND		4.93	"	"		ND				30%	
trans-Chlordane	ND		4.93	"	"		ND				30%	
4,4'-DDD	ND		4.93	"	"		ND				30%	
4,4'-DDE	ND		4.93		"		ND				30%	
4,4'-DDT	ND		4.93		"		ND				30%	

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoci	nlorine Pe	sticides	by EPA 80	081B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060863 - EPA 3546	6						Soi	ı				
Duplicate (5060863-DUP1)				Pre	pared: 06/	30/15 06:55	Analyzed:	07/02/15 15	:11			
QC Source Sample: Livingston G-	121 ODOT 1 1	/2" (A5F081	17-01)									
Dieldrin	ND		4.93	"	"		ND				30%	
Endosulfan I	ND		4.93	"	"		ND				30%	
Endosulfan II	ND		4.93	"	"		ND				30%	
Endosulfan sulfate	ND		4.93	"	"		ND				30%	
Endrin	ND		4.93	"	"		ND				30%	
Endrin Aldehyde	ND		4.93	"	"		ND				30%	
Endrin ketone	ND		4.93		"		ND				30%	
Heptachlor	ND		4.93		"		ND				30%	
Heptachlor epoxide	ND		4.93		"		ND				30%	
Methoxychlor	ND		14.8		"		ND				30%	Q-31
Chlordane (Technical)	ND		148		"		ND				30%	
Toxaphene (Total)	ND		148	"	"		ND				30%	
Surr: 2,4,5,6-TCMX (Surr)		Red	covery: 70 %	Limits: 42	-129 %	Dilı	ution: 5x					
Decachlorobiphenyl (Surr)			91 %	65	-151 %		"					

Apex Laboratories

Dund by hail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soil					
Blank (5060887-BLK2)				Prep	ared: 06/3	30/15 12:06	Analyzed: (07/01/15 09	:50			
EPA 8270D												
Acenaphthene	ND		2.50	ug/kg wet	1							
Acenaphthylene	ND		2.50	"	"							
Anthracene	ND		2.50	"	"							
Benz(a)anthracene	ND		2.50	"	"							
Benzo(a)pyrene	ND		3.75	"	"							
Benzo(b)fluoranthene	ND		3.75	"	"							
Benzo(k)fluoranthene	ND		3.75	"	"							
Benzo(b+k)fluoranthene(s)	ND		7.50	"	"							
Benzo(g,h,i)perylene	ND		2.50	"	"							
Chrysene	ND		2.50	"	"							
Dibenz(a,h)anthracene	ND		2.50	"	"							
Fluoranthene	ND		2.50	"	"							
Fluorene	ND		2.50	"	"							
Indeno(1,2,3-cd)pyrene	ND		2.50	"	"							
1-Methylnaphthalene	ND		5.00	"	"							
2-Methylnaphthalene	ND		5.00	"	"							
Naphthalene	ND		5.00	"	"							
Phenanthrene	ND		2.50	"	"							
Pyrene	ND		2.50	"	"							
Carbazole	ND		3.75	"	"							
Dibenzofuran	ND		2.50	"	"							
4-Chloro-3-methylphenol	ND		25.0	"	"							
2-Chlorophenol	ND		12.5	"	"							
2,4-Dichlorophenol	ND		12.5	"	"							
2,4-Dimethylphenol	ND		12.5	"	"							
2,4-Dinitrophenol	ND		62.5	"	"							
4,6-Dinitro-2-methylphenol	ND		62.5	"	"							
2-Methylphenol	ND		6.25	"	"							
3+4-Methylphenol(s)	ND		6.25	"	"							
2-Nitrophenol	ND		25.0	,,								

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5060887 - EPA 3546							Soi	I					
Blank (5060887-BLK2)				Prepa	ared: 06/3	30/15 12:06	Analyzed:	07/01/15 09	:50				
4-Nitrophenol	ND		25.0	ug/kg wet	"								
Pentachlorophenol (PCP)	ND		25.0	"	"								
Phenol	ND		5.00	"	"								
2,3,4,6-Tetrachlorophenol	ND		12.5	"	"								
2,3,5,6-Tetrachlorophenol	ND		13.1	"	"								
2,4,5-Trichlorophenol	ND		12.5	"	"								
2,4,6-Trichlorophenol	ND		12.5	"	"								
Bis(2-ethylhexyl)phthalate	ND		37.5	"	"								
Butyl benzyl phthalate	ND		25.0	"	"								
Diethylphthalate	ND		25.0	"	"								
Dimethylphthalate	ND		25.0	"	"								
Di-n-butylphthalate	ND		25.0	"	"								
Di-n-octyl phthalate	ND		25.0	"	"								
N-Nitrosodimethylamine	ND		6.25	"	"								
N-Nitroso-di-n-propylamin e	ND		6.25	"	"								
e N-Nitrosodiphenylamine	ND		6.25										
Bis(2-Chloroethoxy)	ND		6.25	"	"								
Bis(2-Chloroethyl) ether	ND		6.25	"	"								
Bis(2-Chloroisopropyl) ether	ND		6.25	"	"								
Hexachlorobenzene	ND		2.50	"	"								
Hexachlorobutadiene	ND		6.25	"	"								
Hexachlorocyclopentadiene	ND		12.5	"	"								
Hexachloroethane	ND		6.25	"	"								
2-Chloronaphthalene	ND		2.50	"	"								
1,2-Dichlorobenzene	ND		6.25	"	"								
1,3-Dichlorobenzene	ND		6.25										
1,4-Dichlorobenzene	ND		6.25	"									
1,2,4-Trichlorobenzene	ND		6.25	"									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soi	il				
Blank (5060887-BLK2)				Prepa	red: 06/	30/15 12:06	Analyzed:	07/01/15 0	9:50			
4-Bromophenyl phenyl	ND		6.25	ug/kg wet	"							
ether 4-Chlorophenyl phenyl	ND		6.25	"								
ether Aniline	ND		12.5	"								
4-Chloroaniline	ND		6.25	"	"							
2-Nitroaniline	ND		50.0	"								
3-Nitroaniline	ND		50.0	"								
4-Nitroaniline	ND		50.0	"								
Nitrobenzene	ND		25.0	"								
2,4-Dinitrotoluene	ND		25.0	"								
2,6-Dinitrotoluene	ND		25.0	"								
Benzoic acid	ND		312	"								
Benzyl alcohol	ND		12.5	"	"							
Isophorone	ND		6.25	"	"							
Azobenzene (1,2-DPH)	ND		6.25	"								
Bis(2-Ethylhexyl) adipate	ND		62.5	"								
3,3'-Dichlorobenzidine	ND		25.0	"								
1,2-Dinitrobenzene	ND		62.5	"								
1,3-Dinitrobenzene	ND		62.5	"	"							
1,4-Dinitrobenzene	ND		62.5	"								
Pyridine	ND		12.5	"	"							
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 72 %	Limits: 37-12	22 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			68 %	44-11	5 %		"					
Phenol-d6 (Surr)			66 %	33-12			"					
p-Terphenyl-d14 (Surr)			90 %	54-12			"					
2-Fluorophenol (Surr)			72 %	35-11			"					_
2,4,6-Tribromophenol (Surr)			93 %	39-13	32 %		"					Q-4
LCS (5060887-BS2)				Prepa	red: 06/	30/15 12:06	Analyzed:	07/01/15 1	0:29			
EPA 8270D												
Acenaphthene	412		2.67	ug/kg wet	1	533		77	40-122%			
Acenaphthylene	400		2.67	"	"			75	32-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5060887 - EPA 3546							Soil						
LCS (5060887-BS2)				Prepa	ared: 06/3	30/15 12:06	Analyzed: (07/01/15 10):29				
Anthracene	428		2.67	ug/kg wet	"	"		80	47-123%				
Benz(a)anthracene	480		2.67	"	"	"		90	49-126%				
Benzo(a)pyrene	491		4.00	"	"	"		92	45-129%				
Benzo(b)fluoranthene	494		4.00	"	"	"		93	45-132%				
Benzo(k)fluoranthene	466		4.00	"	"	"		87	47-132%				
Benzo(b+k)fluoranthene(s)	976		8.00	"	"	1070		92	45-132%				
Benzo(g,h,i)perylene	472		2.67	"	"	533		89	43-134%				
Chrysene	467		2.67	"	"	"		88	50-124%				
Dibenz(a,h)anthracene	466		2.67	"	"			87	45-134%				
Fluoranthene	445		2.67	"	"	"		83	50-127%				
Fluorene	405		2.67	"	"	"		76	43-125%				
Indeno(1,2,3-cd)pyrene	456		2.67	"	"	"		85	45-133%				
l-Methylnaphthalene	402		5.33	"	"	"		75	40-120%				
2-Methylnaphthalene	421		5.33	"	"			79	38-122%				
Naphthalene	380		5.33		"			71	35-123%				
Phenanthrene	398		2.67		"			75	50-121%				
Pyrene	422		2.67		"			79	47-127%				
Carbazole	448		4.00	"	"			84	50-122%				
Dibenzofuran	395		2.67	"	"			74	44-120%				
4-Chloro-3-methylphenol	520		26.7	"	"			98	45-122%				
2-Chlorophenol	449		13.3	"	"			84	34-121%				
2,4-Dichlorophenol	470		13.3	"	"				40-122%				
2,4-Dimethylphenol	506		13.3	"	"				30-127%				
2,4-Dinitrophenol	543		66.7	"	"			102	5-137%				
4,6-Dinitro-2-methylphenol	495		66.7					93	29-132%				
2-Methylphenol	495		6.67						32-122%				
3+4-Methylphenol(s)	507		6.67						34-120%				
2-Nitrophenol	456		26.7						36-123%				
4-Nitrophenol	513		26.7						30-132%				
Pentachlorophenol (PCP)	511		26.7						25-133%				
Phenol	520		5.33	"					34-120%			Q-41	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soil	l				
LCS (5060887-BS2)				Pre	pared: 06/.	30/15 12:06	Analyzed:	07/01/15 1	0:29			
2,3,4,6-Tetrachlorophenol	477		13.3	ug/kg wet	"	"		89	44-125%			
2,3,5,6-Tetrachlorophenol	472		14.0	"	"	"		89	40-120%			
2,4,5-Trichlorophenol	487		13.3	"	"	"		91	41-124%			
2,4,6-Trichlorophenol	475		13.3	"	"	"		89	39-126%			
Bis(2-ethylhexyl)phthalate	522		40.0	"	"	"		98	51-133%			
Butyl benzyl phthalate	526		26.7	"	"	"		99	48-132%			
Diethylphthalate	461		26.7	"	"	"		86	50-124%			
Dimethylphthalate	464		26.7	"	"	"		87	48-124%			
Di-n-butylphthalate	479		26.7	"	"	"		90	51-128%			
Di-n-octyl phthalate	486		26.7	"	"	"		91	44-140%			
N-Nitrosodimethylamine	521		6.67	"	"	"		98	23-120%			Q-41
N-Nitroso-di-n-propylamin	529		6.67	"	"	"		99	36-120%			Q-41
e N-Nitrosodiphenylamine	454		6.67		,,			85	38-127%			
	454							85 85				
Bis(2-Chloroethoxy) methane	430		6.67					83	36-121%			
Bis(2-Chloroethyl) ether	414		6.67	"	"	"		78	31-120%			
Bis(2-Chloroisopropyl)	522		6.67	"	"	"		98	33-131%			Q-41
ether Hexachlorobenzene	474		2.67					89	44-122%			
Hexachlorobutadiene	430		6.67					81	32-123%			
Hexachlorocyclopentadiene	582		13.3					109	5-140%			Q-41
Hexachloroethane	436		6.67		"			82	28-120%			¥
2-Chloronaphthalene	402		2.67		"			75	41-120%			
1,2-Dichlorobenzene	385		6.67		"			72	33-120%			
1,3-Dichlorobenzene	395		6.67		"			74	30-120%			
1,4-Dichlorobenzene	395		6.67					74	31-120%			
1,2,4-Trichlorobenzene	378		6.67					71	34-120%			
									46-124%			
4-Bromophenyl phenyl ether	491		6.67					92	40-124%			
4-Chlorophenyl phenyl	434		6.67		"	"		81	45-121%			
ether Aniline	412		13.3					77	7-120%			
	112		13.3					.,	, 120/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			emivolatile	Organic Co	лпрои	nus by EP/	4 02/UD					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soi	I				
LCS (5060887-BS2)				Prepa	ared: 06/	30/15 12:06	Analyzed:	07/01/15 10	:29			
4-Chloroaniline	382		6.67	ug/kg wet	"	"		72	16-120%			
2-Nitroaniline	458		53.3	"	"	"		86	44-127%			
3-Nitroaniline	426		53.3	"	"	"		80	33-120%			
4-Nitroaniline	480		53.3	"	"	"		90	35-120%			
Nitrobenzene	494		26.7	"	"	"		93	34-122%			Q-41
2,4-Dinitrotoluene	484		26.7	"	"	"		91	48-126%			
2,6-Dinitrotoluene	482		26.7	"	"	"		90	46-124%			
Benzoic acid	ND		333	"	"	1070		16	5-140%			
Benzyl alcohol	519		13.3	"	"	533		97	29-122%			
Isophorone	519		6.67	"	"	"		97	30-122%			Q-41
Azobenzene (1,2-DPH)	527		6.67	"	"	"		99	39-125%			
Bis(2-Ethylhexyl) adipate	510		66.7	"	"	"		96	60-121%			
3,3'-Dichlorobenzidine	961		26.7	"	"	1070		90	22-121%			
1,2-Dinitrobenzene	468		66.7	"	"	533		88	44-120%			
1,3-Dinitrobenzene	481		66.7	"	"	"		90	42-127%			
1,4-Dinitrobenzene	492		66.7	"	"	"		92	37-132%			
Pyridine	417		13.3	"	"	"		78	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 90 %	Limits: 37-1	22 %	Dilu	ution: 1x					
2-Fluorobiphenyl (Surr)			75 %	44-1.	15 %		"					
Phenol-d6 (Surr)			92 %		22 %		"					
p-Terphenyl-d14 (Surr)			108 %		27 % 15 %		"					
2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr)			93 % 107 %		15 % 32 %		"					Q-41
						20/15 12 26		07/01/15	57			£ /-
Duplicate (5060887-DUP1)				Prepa	ared: U6/	30/15 12:06	Analyzed:	07/01/15 11	:5/			
QC Source Sample: Livingston G-12 EPA 8270D	1 ODOT 1 1/	'2" (A5F08	17-01)									
Acenaphthene	ND		2.79	ug/kg dry	1		ND				30%	
Acenaphthylene	ND		2.79	"	,,		ND				30%	
Anthracene	ND		2.79				ND				30%	
Benz(a)anthracene	ND		2.79	"			ND				30%	
• •												
Benzo(a)pyrene	ND		4.17				ND				30%	

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		s	emivolatile	Organic Co	mpour	nds by EP/	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546	6						Soil					
Duplicate (5060887-DUP1)				Prepa	ared: 06/3	30/15 12:06	Analyzed:	07/01/15 11	:57			
QC Source Sample: Livingston G-	121 ODOT 1 1/	2" (A5F08)	17-01)									
Benzo(b)fluoranthene	ND		4.17	ug/kg dry	"		ND				30%	
Benzo(k)fluoranthene	ND		4.17	"	"		ND				30%	
Benzo(b+k)fluoranthene(s)	ND		8.35	"	"		ND				30%	
Benzo(g,h,i)perylene	ND		2.79	"	"		ND				30%	
Chrysene	ND		2.79	"	"		ND				30%	
Dibenz(a,h)anthracene	ND		2.79	"	"		ND				30%	
Fluoranthene	ND		2.79	"	"		ND				30%	
Fluorene	ND		2.79	"	"		ND				30%	
Indeno(1,2,3-cd)pyrene	ND		2.79	"	"		ND				30%	
1-Methylnaphthalene	ND		5.56	"	"		ND				30%	
2-Methylnaphthalene	ND		5.56	"	"		ND				30%	
Naphthalene	ND		5.56	"	"		ND				30%	
Phenanthrene	ND		2.79	"	"		ND				30%	
Pyrene	ND		2.79	"	"		ND				30%	
Carbazole	ND		4.17	"	"		ND				30%	
Dibenzofuran	ND		2.79	"	"		ND				30%	
4-Chloro-3-methylphenol	ND		27.9	"	"		ND				30%	
2-Chlorophenol	ND		13.9	"	"		ND				30%	
2,4-Dichlorophenol	ND		13.9	"			ND				30%	
2,4-Dimethylphenol	ND		13.9	"	"		ND				30%	
2,4-Dinitrophenol	ND		69.6	"	"		ND				30%	
4,6-Dinitro-2-methylphenol	ND		69.6	"	"		ND				30%	
2-Methylphenol	ND		6.96	"	"		ND				30%	
3+4-Methylphenol(s)	ND		6.96	"	"		ND				30%	
2-Nitrophenol	ND		27.9	"	"		ND				30%	
4-Nitrophenol	ND		27.9	"	"		ND				30%	
Pentachlorophenol (PCP)	ND		27.9	"			ND				30%	
Phenol	ND		5.56	"			ND				30%	
2,3,4,6-Tetrachlorophenol	ND		13.9	"			ND				30%	
2,3,5,6-Tetrachlorophenol	ND		14.6	"			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		<u> </u>	emivolatile	Organic Co	ompou	nds by EP/	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soi	l				
Duplicate (5060887-DUP1)				Prep	ared: 06/	30/15 12:06	Analyzed:	07/01/15 11	:57			
QC Source Sample: Livingston G-12	21 ODOT 1 1/	'2" (A5F081	17-01)									
2,4,5-Trichlorophenol	ND		13.9	ug/kg dry	"		ND				30%	
2,4,6-Trichlorophenol	ND		13.9	"	"		ND				30%	
Bis(2-ethylhexyl)phthalate	ND		41.7	"	"		ND				30%	
Butyl benzyl phthalate	ND		27.9	"	"		ND				30%	
Diethylphthalate	ND		27.9	"	"		ND				30%	
Dimethylphthalate	ND		27.9	"	"		ND				30%	
Di-n-butylphthalate	ND		27.9	"	"		ND				30%	
Di-n-octyl phthalate	ND		27.9	"	"		ND				30%	
N-Nitrosodimethylamine	ND		6.96	"	"		ND				30%	
N-Nitroso-di-n-propylamin	ND		6.96		"		ND				30%	
e N-Nitrosodiphenylamine	ND		6.96		"		ND				30%	
Bis(2-Chloroethoxy)	ND		6.96	"	"		ND				30%	
methane Bis(2-Chloroethyl) ether	ND		6.96		"		ND				30%	
Bis(2-Chloroisopropyl)	ND		6.96	"	"		ND				30%	
Hexachlorobenzene	ND		2.79	"	"		ND				30%	
Hexachlorobutadiene	ND		6.96	"	"		ND				30%	
Hexachlorocyclopentadiene	ND		13.9	"	"		ND				30%	
Hexachloroethane	ND		6.96	"	"		ND				30%	
2-Chloronaphthalene	ND		2.79	"	"		ND				30%	
1,2-Dichlorobenzene	ND		6.96	"	"		ND				30%	
1,3-Dichlorobenzene	ND		6.96		"		ND				30%	
1,4-Dichlorobenzene	ND		6.96		"		ND				30%	
1,2,4-Trichlorobenzene	ND		6.96		"		ND				30%	
4-Bromophenyl phenyl	ND		6.96	"	"		ND				30%	
ether 4-Chlorophenyl phenyl	ND		6.96	"	"		ND				30%	
ether Aniline	ND		13.9		"		ND				30%	
4-Chloroaniline	ND		6.96		"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	ompou	nds by EPA	4 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546	<u> </u>						Soi	I				
Duplicate (5060887-DUP1)				Prepa	ared: 06/	30/15 12:06	Analyzed:	07/01/15 11	:57			
QC Source Sample: Livingston G-1	21 ODOT 1 1/	'2" (A5F081	7-01)									
2-Nitroaniline	ND		55.6	ug/kg dry	"		ND				30%	
3-Nitroaniline	ND		55.6	"	"		ND				30%	
4-Nitroaniline	ND		55.6	"	"		ND				30%	
Nitrobenzene	ND		27.9	"	"		ND				30%	
2,4-Dinitrotoluene	ND		27.9	"	"		ND				30%	
2,6-Dinitrotoluene	ND		27.9	"	"		ND				30%	
Benzoic acid	ND		347	"	"		ND				30%	
Benzyl alcohol	ND		13.9	"	"		ND				30%	
Isophorone	ND		6.96	"	"		ND				30%	
Azobenzene (1,2-DPH)	ND		6.96	"	"		ND				30%	
Bis(2-Ethylhexyl) adipate	ND		69.6	"	"		ND				30%	
3,3'-Dichlorobenzidine	ND		27.9	"	"		ND				30%	
1,2-Dinitrobenzene	ND		69.6	"	"		ND				30%	
1,3-Dinitrobenzene	ND		69.6	"	"		ND				30%	
1,4-Dinitrobenzene	ND		69.6	"	"		ND				30%	
Pyridine	ND		13.9	"	"		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Red	covery: 73 %	Limits: 37-1	22 %	Dilu	tion: 1x					
2-Fluorobiphenyl (Surr)			60 %		15 %		"					
Phenol-d6 (Surr)			64 %		22 %		"					
p-Terphenyl-d14 (Surr)			77 %		27 %		"					
2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr)			79 % 65 %		15 % 32 %		,,					Q-41
			05 78									
Matrix Spike (5060887-MS1)				Prepa	ared: 06/	30/15 12:06	Analyzed:	07/01/15 13	:51			
QC Source Sample: Livingston G-1 EPA 8270D	21 Berm Back	cfill (A5F08)	17-03)									
Acenaphthene	446		8.46	ug/kg dry	3	564	ND	79	10-122%			
Acenaphthylene	458		8.46	"	"	"	ND		32-132%			
Anthracene	472		8.46				ND		47-123%			
Benz(a)anthracene	452		8.46				ND		49-126%			
• •	500		12.7				ND		45-120%			
Benzo(a)pyrene	500		12.7				עאו	07 4	TJ-12 3 70			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soil	I				
Matrix Spike (5060887-MS1)				Prep	ared: 06/.	30/15 12:06	Analyzed:	07/01/15 1	3:51			
QC Source Sample: Livingston G-12	1 Berm Back	fill (A5F08	317-03)									
Benzo(b)fluoranthene	486		12.7	ug/kg dry	"	"	ND	86	45-132%			
Benzo(k)fluoranthene	471		12.7	"	"	"	ND	84	47-132%			
Benzo(b+k)fluoranthene(s)	955		25.4	"	"	1130	ND	85	45-132%			
Benzo(g,h,i)perylene	453		8.46	"	"	564	ND	80	43-134%			
Chrysene	427		8.46	"	"	"	ND	76	50-124%			
Dibenz(a,h)anthracene	449		8.46	"	"	"	ND	80	45-134%			
Fluoranthene	473		8.46	"	"	"	ND	84	50-127%			
Fluorene	463		8.46	"	"	"	ND	82	43-125%			
Indeno(1,2,3-cd)pyrene	435		8.46	"	"	"	ND	77	45-133%			
1-Methylnaphthalene	427		16.9	"	"	"	ND	76	40-120%			
2-Methylnaphthalene	442		16.9	"	"	"	ND	78	38-122%			
Naphthalene	431		16.9	"	"	"	ND	77	35-123%			
Phenanthrene	449		8.46	"	"	"	ND	80	50-121%			
Pyrene	477		8.46	"	"	"	ND	85	47-127%			
Carbazole	488		12.7	"	"	"	ND	87	50-122%			
Dibenzofuran	443		8.46	"	"	"	ND	79	44-120%			
4-Chloro-3-methylphenol	541		84.6		"		ND	96	45-122%			Q-41
2-Chlorophenol	471		42.2		"		ND	84	34-121%			
2,4-Dichlorophenol	452		42.2		"		ND	80	40-122%			
2,4-Dimethylphenol	407		42.2	"	"		ND	72	30-127%			
2,4-Dinitrophenol	412		211	"	"		ND	73	5-137%			Q-41
4,6-Dinitro-2-methylphenol	485		211	"	"	"	ND	86	29-132%			Q-41
2-Methylphenol	466		21.1		"		ND	83	32-122%			
3+4-Methylphenol(s)	476		21.1		"		ND	84	34-120%			
2-Nitrophenol	449		84.6		"		ND	80	36-123%			
4-Nitrophenol	454		84.6		"		ND	80	30-132%			
Pentachlorophenol (PCP)	386		84.6		"		ND	68	25-133%			
Phenol	497		16.9		"		ND	88	34-120%			
2,3,4,6-Tetrachlorophenol	452		42.2		"		ND	80	44-125%			
2,3,5,6-Tetrachlorophenol	446		44.4		"		ND	79	40-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	Semivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soil					
Matrix Spike (5060887-MS1)				Prep	ared: 06/.	30/15 12:06	Analyzed: (07/01/15 1	3:51			
QC Source Sample: Livingston G-12	1 Berm Back	fill (A5F08	317-03)									
2,4,5-Trichlorophenol	513		42.2	ug/kg dry	"	"	ND	91	41-124%			
2,4,6-Trichlorophenol	488		42.2	"	"	"	ND	86	39-126%			
Bis(2-ethylhexyl)phthalate	516		127	"	"	"	ND	92	51-133%			
Butyl benzyl phthalate	527		84.6	"	"	"	ND	94	48-132%			
Diethylphthalate	491		84.6	"		"	ND	87	50-124%			
Dimethylphthalate	478		84.6	"		"	ND	85	48-124%			
Di-n-butylphthalate	514		84.6	"	"	"	ND	91	51-128%			
Di-n-octyl phthalate	610		84.6	"		"	ND	108	44-140%			Q-41
N-Nitrosodimethylamine	451		21.1	"	"	"	ND	80	23-120%			
N-Nitroso-di-n-propylamin e	555		21.1	"	"	"	ND	99	36-120%			Q-41
N-Nitrosodiphenylamine	485		21.1	"		"	ND	86	38-127%			
Bis(2-Chloroethoxy) methane	464		21.1	"	"	"	ND	82	36-121%			
Bis(2-Chloroethyl) ether	464		21.1	"		"	ND	82	31-120%			
Bis(2-Chloroisopropyl) ether	608		21.1	"	"	"	ND	108	33-131%			Q-41
Hexachlorobenzene	385		8.46	"	"	"	ND	68	44-122%			
Hexachlorobutadiene	398		21.1	"	"	"	ND	71	32-123%			
Hexachlorocyclopentadiene	460		42.2	"	"	"	ND	82	5-140%			
Hexachloroethane	464		21.1	"		"	ND	82	28-120%			
2-Chloronaphthalene	415		8.46	"		"	ND	74	41-120%			
1,2-Dichlorobenzene	423		21.1	"	"	"	ND	75	33-120%			
1,3-Dichlorobenzene	411		21.1	"	"		ND	73	30-120%			
1,4-Dichlorobenzene	416		21.1	"	"		ND	74	31-120%			
1,2,4-Trichlorobenzene	390		21.1	"	"		ND	69	34-120%			
4-Bromophenyl phenyl ether	424		21.1	"	"	•	ND	75	46-124%			
4-Chlorophenyl phenyl ether	429		21.1	"	"	"	ND	76	45-121%			
Aniline	375		42.2	"	"	"	ND	66	7-120%			
4-Chloroaniline	341		21.1	"		"	ND	61	16-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual la buil

Page 33 of 43

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

		s	emivolatile	Organic Co	ompou	nds by EP/	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060887 - EPA 3546							Soi	l				
Matrix Spike (5060887-MS1)				Prep	ared: 06	30/15 12:06	Analyzed:	07/01/15 1	3:51			
QC Source Sample: Livingston G-12	21 Berm Bacl	kfill (A5F08	17-03)									
2-Nitroaniline	505		169	ug/kg dry	"	"	ND	90	44-127%			
3-Nitroaniline	395		169	"	"	"	ND	70	33-120%			
4-Nitroaniline	391		169	"	"	"	ND	69	35-120%			
Nitrobenzene	490		84.6	"	"	"	ND	87	34-122%			
2,4-Dinitrotoluene	477		84.6	"	"	"	ND	85	48-126%			
2,6-Dinitrotoluene	480		84.6	"	"	"	ND	85	46-124%			
Benzoic acid	ND		1060	"	"	1130	ND	42	5-140%			Q-41
Benzyl alcohol	527		42.2	"	"	564	ND	94	29-122%			
Isophorone	527		21.1	"	"	"	ND	93	30-122%			Q-41
Azobenzene (1,2-DPH)	542		21.1		"	"	ND	96	39-125%			Q-41
Bis(2-Ethylhexyl) adipate	532		211		"	"	ND	94	60-121%			
3,3'-Dichlorobenzidine	1410		84.6		"	1130	ND	125	22-121%			Q-01
1,2-Dinitrobenzene	440		211		"	564	ND	78	44-120%			
1,3-Dinitrobenzene	460		211	"	"		ND	82	42-127%			
1,4-Dinitrobenzene	483		211	"	"		ND	86	37-132%			
Pyridine	311		42.2	"	"	"	ND	55	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 81 %	Limits: 37-1	22 %	Dila	ution: 3x					
2-Fluorobiphenyl (Surr)			70 %	44-1	15 %		"					
Phenol-d6 (Surr)			77 %		22 %		"					
p-Terphenyl-d14 (Surr)			77 %		27 %		"					
2-Fluorophenol (Surr)			87 %		15 %		"					Q-4
2,4,6-Tribromophenol (Surr)			82 %	39-1	32 %		"					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 602	0 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060840 - EPA 3051/	4						Soil	I				
Blank (5060840-BLK1)				Prepa	red: 06/2	29/15 09:58	Analyzed:	07/02/15 0	1:23			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Barium	ND		1.00	"	"							
Cadmium	ND		0.200	"	"							
Chromium	ND		4.00	"	"							
Copper	ND		1.00	"	"							
Lead	ND		0.200	"	"							
Manganese	ND		1.00	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		2.00	"	"							
Silver	ND		0.200	"	"							
Zinc	ND		4.00	"	"							
LCS (5060840-BS1)				Prepa	red: 06/2	29/15 09:58	Analyzed:	07/02/15 0	1:27			
EPA 6020A												
Arsenic	48.0		1.00	mg/kg wet	10	50.0		96	80-120%			
Barium	50.5		1.00	"	"	"		101	"			
Cadmium	49.0		0.200	"	"	"		98	"			
Chromium	49.7		4.00	"	"	"		99	"			
Copper	52.3		1.00	"	"	"		105	"			
Lead	51.8		0.200	"	"	"		104	"			
Manganese	50.4		1.00	"	"	"		101	"			
Mercury	1.08		0.0800	"	"	1.00		108	"			
Selenium	24.5		2.00	"	"	25.0		98	"			
Silver	24.9		0.200	"	"	"		100	"			
Zinc	49.3		4.00	"	"	50.0		99	"			
Matrix Spike (5060840-MS2)				Prepa	red: 06/2	29/15 09:58	Analyzed:	07/02/15 0	3:36			
QC Source Sample: Livingston G-12 EPA 6020A	21 Berm Back	cfill (A5F08	317-03)									
Arsenic	52.9		1.04	mg/kg dry	10	51.9	1.65	99	75-125%			
Barium	91.9		1.04	"		"	59.4	63	,,			Q-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by I	EPA 60	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060840 - EPA 3051A	4						Soi	l				
Matrix Spike (5060840-MS2)		·		Prep	ared: 06/	29/15 09:58	Analyzed:	07/02/15 03	3:36	·	·	
QC Source Sample: Livingston G-12	1 Berm Back	cfill (A5F08	17-03)									
Cadmium	51.1		0.207	mg/kg dry	"	"	0.188	98	"			
Chromium	54.7		4.15	"	"	"	2.45	101	"			
Copper	95.6		1.04	"	"	"	24.5	137	"			Q-04
Lead	53.9		0.207	"	"	"	2.50	99	"			
Manganese	210		1.04	"	"	"	210	0.6	"			Q-03
Mercury	1.07		0.0830	"	"	1.04	ND	103	"			
Selenium	26.4		2.07	"	"	25.9	ND	102	"			
Silver	26.4		0.207	"	"	"	ND	102	"			
Zinc	77.3		4.15		"	51.9	33.3	85	"			

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 602	20 (ICPMS)						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070183 - EPA 30	51A						Soi	l				
Blank (5070183-BLK1)				Prepa	red: 07/	08/15 11:45	Analyzed:	07/09/15 14	k:11			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Barium	ND		1.00	"	"							
Cadmium	ND		1.00	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		1.00	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		2.00	"	"							
Silver	ND		1.00	"	"							
LCS (5070183-BS1)				Prepa	red: 07/0	08/15 11:45	Analyzed:	07/09/15 14	l:14			
EPA 6020A												
Arsenic	52.8		1.00	mg/kg wet	10	50.0		106	80-120%			
Barium	52.9		1.00	"	"	"		106	"			
Cadmium	49.4		1.00	"	"	"		99	"			
Chromium	51.3		1.00	"	"	"		103	"			
Lead	49.3		1.00	"	"	"		99	"			
Mercury	1.04		0.0800	"	"	1.00		104	"			
Selenium	26.4		2.00	"	"	25.0		105	"			
Silver	24.8		1.00	"	"	"		99	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 100
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 07/17/15 16:35

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5060845 - Total Sol	ids (Dry W	eight)					Soi	l				
Duplicate (5060845-DUP2)				Prep	pared: 06/	29/15 11:38	Analyzed:	06/30/15 09	:34			
QC Source Sample: Livingston G- EPA 8000C	QC Source Sample: Livingston G-121 Berm Backfill (A5F0817-03) EPA 8000C											
% Solids	95.5		1.00	% by Weight	1		94.5			1	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Quant la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 100
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 07/17/15 16:35

SAMPLE PREPARATION INFORMATION

		F	Polychlorinated Biphe	enyls by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5060841							
A5F0817-01	Soil	EPA 8082A	06/26/15 06:45	06/29/15 10:42	10.13g/5mL	10g/5mL	0.99
A5F0817-02	Soil	EPA 8082A	06/26/15 06:15	06/29/15 10:42	10.04g/5mL	10g/5mL	1.00
A5F0817-03	Soil	EPA 8082A	06/26/15 06:48	06/29/15 10:42	10.06g/5mL	10g/5mL	0.99
		C	Organochlorine Pesti	cides by EPA 8081B			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5060863			-				
A5F0817-01	Soil	EPA 8081B	06/26/15 06:45	06/30/15 06:55	10.88g/5mL	10g/5mL	0.92
A5F0817-02	Soil	EPA 8081B	06/26/15 06:15	06/30/15 06:55	11.62g/5mL	10g/5mL	0.86
A5F0817-03	Soil	EPA 8081B	06/26/15 06:48	06/30/15 06:55	11.35g/5mL	10g/5mL	0.88
		Sem	ivolatile Organic Con	npounds by EPA 8270	D		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5060887							
A5F0817-01RE2	Soil	EPA 8270D	06/26/15 06:45	06/30/15 12:26	15.04g/2mL	15g/2mL	1.00
A5F0817-02	Soil	EPA 8270D	06/26/15 06:15	06/30/15 12:26	15.03g/2mL	15g/2mL	1.00
A5F0817-03	Soil	EPA 8270D	06/26/15 06:48	06/30/15 12:26	15.01g/2mL	15g/2mL	1.00
			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5060840							
A5F0817-01	Soil	EPA 6020A	06/26/15 06:45	06/29/15 09:58	0.516g/ 50 mL	0.5g/50mL	0.97
A5F0817-01RE1	Soil	EPA 6020A	06/26/15 06:45	06/29/15 09:58	0.516g/ 50 mL	0.5g/50mL	0.97
A5F0817-02	Soil	EPA 6020A	06/26/15 06:15	06/29/15 09:58	0.502g/ 50 mL	0.5g/50mL	1.00
A5F0817-02RE1	Soil	EPA 6020A	06/26/15 06:15	06/29/15 09:58	0.502g/ 50 mL	0.5g/50mL	1.00
A5F0817-03	Soil	EPA 6020A	06/26/15 06:48	06/29/15 09:58	0.479g $/50$ mL	0.5g/50mL	1.04
A5F0817-03RE1	Soil	EPA 6020A	06/26/15 06:48	06/29/15 09:58	0.479g/ 50 mL	0.5g/50mL	1.04
Batch: 5070183							
A5F0817-02RE2	Soil	EPA 6020A	06/26/15 06:15	07/08/15 11:45	0.516g/50mL	0.5g/50mL	0.97

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand by famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice07/17/15 16:35

SAMPLE PREPARATION INFORMATION

			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight	1			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5060845							
A5F0817-01	Soil	EPA 8000C	06/26/15 06:45	06/29/15 11:38	1N/A/1N/A	1N/A/1N/A	NA
A5F0817-02	Soil	EPA 8000C	06/26/15 06:15	06/29/15 11:38	1N/A/1N/A	1N/A/1N/A	NA
A5F0817-03	Soil	EPA 8000C	06/26/15 06:48	06/29/15 11:38	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number: 100Reported:Vancouver, WA 98682Project Manager: Terry Rice07/17/15 16:35

Notes and Definitions

Qualifiers:

C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in
	order to minimize matrix interference

- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to $\frac{1}{2}$ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice07/17/15 16:35

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Quand la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:100Reported:Vancouver, WA 98682Project Manager:Terry Rice07/17/15 16:35

12232 S.W. Garden Place, Tigard, OR 97223 Phr 503-718-2323 Fax: 503-718-0333					
Teny Rise	Project Name:	Stradahl / Evras	Evrale Project#	100	
W/A Phone: 3	Phone: 364-373-29.00	Fax 360-823-240) Email:	24ct) Email:		
		ANALYSIS RE	quest	٠	
8700 KBDW AOC? 8700 AOC WALLH-DZ WALLH-DZ	8985 bCB ² 8510 8100 bYH ² 8510 8AOC 8560 BLEX	AL Sh. As. Bs. Bs. Cd. TCLP Metals (8) 600 TTO	1200-72 1200-72 Pesticiales	an-1/suxe,U	
	X	X	X	¥	-
	X	×	<u> </u>	\ \ \	
	X	X	Ŕ		
					+
NO	SPECIAL INSTRUCT	IONS:			-
3 Day WEGE Other:					
R~ Duc. 625-19			PECEIVER RY:	do Lan	F
The Bis Printed Name: Tany Post Time 815	Printed Name		Printed Name (J.C.)	Salvent 13	_
	Company: CoM	(13H) 2	3	Q	
	E. Helio				
	2 8500 KBDM AOC ²	STORING BLEX STORING BLEX	LCTb Victorie (8) RCBV Metarte (8) RCBV Metart	LCTb Victorie (8) RCBV Metaric (8) RCBV Metari	TOTAL BEST

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, August 27, 2015

Terry Rice Columbia West Engineering, Inc. 11917 NE 95th Street Vancouver, WA 98682

RE: Storedahl-Evraz / 1033Q

Enclosed are the results of analyses for work order <u>A5G0329</u>, which was received by the laboratory on 7/13/2015 at 2:50:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

Dund la fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMATI	ON	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BB-S Comp	A5G0329-01	Soil	07/13/15 08:40	07/13/15 14:50
BB-C Comp	A5G0329-02	Soil	07/13/15 08:50	07/13/15 14:50
BB-N Comp	A5G0329-03	Soil	07/13/15 09:00	07/13/15 14:50
BB-Total Comp	A5G0329-04	Soil	07/13/15 09:11	07/13/15 14:50

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

ANALYTICAL CASE NARRATIVE

Work Order: A5G0329

Amended Report Revision 1:

Additional Analyses-

This report supersedes all previous reports.

The final report has been amended to include additional analyses for sample BB-Total Comp (Apex ID: A5G0329-04) including; 8082 PCBs, 8081 Pesticides, 8270 Semi-Volatiles, and 6020 metals.

Darrell Auvil Project Manager 8/27/2015

Apex Laboratories

Quand la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Reporting Analyte Result MDL Limit Dilution Date Analyzed Method Notes Units BB-Total Comp (A5G0329-04) Matrix: Soil Batch: 5070726 C-07 Aroclor 1016 ug/kg dry ND 9.19 07/27/15 17:53 EPA 8082A Aroclor 1221 ND 9.19 Aroclor 1232 ND 9.19 Aroclor 1242 ND 9.19 Aroclor 1248 9.19 ND Aroclor 1254 ND 9.19 Aroclor 1260 ND 9.19

Surrogate: Decachlorobiphenyl (Surr)

Recovery: 90 %

Limits: 72-126 %

Apex Laboratories

Dund to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number:
 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager:
 Terry Rice
 08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B Reporting Analyte Result MDL Limit Dilution Date Analyzed Method Notes Units BB-Total Comp (A5G0329-04RE1) Matrix: Soil Batch: 5070768 C-05 ug/kg dry Aldrin ND 1.80 07/30/15 16:25 EPA 8081B alpha-BHC ND 1.80 beta-BHC ND 1.80 delta-BHC ND 1.80 gamma-BHC (Lindane) ND 1.80 cis-Chlordane ND 1.80 trans-Chlordane ND 1.80 4,4'-DDD ND 1.80 4,4'-DDE ND 1.80 4.4'-DDT ND 1.80 Dieldrin ND 1.80 Endosulfan I ND 1.80 Endosulfan II ND 1.80 Endosulfan sulfate ND 1.80 Endrin ND 1.80 Endrin Aldehyde ND 1.80 Endrin ketone ND 1.80 Heptachlor ND 1.80 Heptachlor epoxide ND 1.80 ND Methoxychlor 5.41 54.1 Chlordane (Technical) ND Toxaphene (Total) ND 54.1 Surrogate: 2,4,5,6-TCMX (Surr) Recovery: 67 % Limits: 42-129 %

104%

Limits: 65-151 %

Apex Laboratories

Quant la famil

Decachlorobiphenyl (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Q-41

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
BB-Total Comp (A5G0329-04RE2)			Matrix: Soil	В	atch: 50707	14						
Acenaphthene	ND		2.65	ug/kg dry	1	07/27/15 15:57	EPA 8270D					
Acenaphthylene	ND		2.65	••	"	"	"					
Anthracene	ND		2.65	••			"					
Benz(a)anthracene	ND		2.65	••			"					
Benzo(a)pyrene	ND		3.97	••			"					
Benzo(b)fluoranthene	ND		3.97	"		"	"					
Benzo(k)fluoranthene	ND		3.97	"	"	"	"					
Benzo(g,h,i)perylene	ND		2.65	"	"	"	"					
Chrysene	ND		2.65	"	"	"	"					
Dibenz(a,h)anthracene	ND		2.65	"	"	"	"					
Fluoranthene	ND		2.65	"	"	"	"					
Fluorene	ND		2.65	"	"	"	"					
Indeno(1,2,3-cd)pyrene	ND		2.65	"	"		"					
1-Methylnaphthalene	ND		5.29	"	"	"	"					
2-Methylnaphthalene	ND		5.29	"	"		"					
Naphthalene	ND		5.29	"	"	"	"					
Phenanthrene	ND		2.65	"			"					
Pyrene	ND		2.65	"	"		"					
Carbazole	ND		3.97	"	"		"					
Dibenzofuran	ND		2.65	"			"					
4-Chloro-3-methylphenol	ND		26.5	"	"		"					
2-Chlorophenol	ND		13.2	"	"	"	"					
2,4-Dichlorophenol	ND		13.2	"	"	"	"					
2,4-Dimethylphenol	ND		13.2	"			"					
2,4-Dinitrophenol	ND		66.2	"	"	"	"					
4,6-Dinitro-2-methylphenol	ND		66.2	"	"	"	"					
2-Methylphenol	ND		6.62	"			"					
3+4-Methylphenol(s)	ND		6.62	"			"					
2-Nitrophenol	ND		26.5	"			"					
4-Nitrophenol	ND		26.5	"			"					
Pentachlorophenol (PCP)	ND		26.5	"			"					
Phenol	ND		5.29	"			"					
2,3,4,6-Tetrachlorophenol	ND		13.2	"			"					
2,3,5,6-Tetrachlorophenol	ND ND		13.2	"								
-	ND		13.2	"			,,					
2,4,5-Trichlorophenol	ND		13.2									

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

				ompounds by				
Analyte B-Total Comp (A5G0329-04RE2)	Result	MDL	Reporting Limit Matrix: Soil	Units	Dilution atch: 50707	Date Analyzed	Method	Notes
2,4,6-Trichlorophenol	ND		13.2	ug/kg dry	1	"	EPA 8270D	
Bis(2-ethylhexyl)phthalate	ND		39.7	"	"		"	
Butyl benzyl phthalate	ND		26.5		"			
Diethylphthalate	ND		26.5	"	"			
Dimethylphthalate	ND		26.5		"			
Di-n-butylphthalate	ND		26.5	"	"		"	
Di-n-octyl phthalate	ND		26.5		"			
N-Nitrosodimethylamine	ND		6.62	"	"			
N-Nitroso-di-n-propylamine	ND		6.62	"	"		"	
N-Nitrosodiphenylamine	ND		6.62		"			
Bis(2-Chloroethoxy) methane	ND		6.62		"			
Bis(2-Chloroethyl) ether	ND		6.62	"	"		"	
Bis(2-Chloroisopropyl) ether	ND		6.62		"			
Hexachlorobenzene	ND		2.65	"	"			
Hexachlorobutadiene	ND		6.62	"	"			
Hexachlorocyclopentadiene	ND		13.2	"	"			
Hexachloroethane	ND		6.62	"	"			
2-Chloronaphthalene	ND		2.65	"				
1,2-Dichlorobenzene	ND		6.62	"		"	"	
1,3-Dichlorobenzene	ND		6.62	"	"			
1,4-Dichlorobenzene	ND		6.62	"	"			
1,2,4-Trichlorobenzene	ND		6.62	"	"		"	
4-Bromophenyl phenyl ether	ND		6.62		"			
4-Chlorophenyl phenyl ether	ND		6.62	"	"			
Aniline	ND		13.2	"	"			
4-Chloroaniline	ND		6.62	"	"		"	
2-Nitroaniline	ND		52.9				"	
3-Nitroaniline	ND		52.9				"	
-Nitroaniline	ND		52.9	"	"		"	
Vitrobenzene	ND		26.5		"			
,4-Dinitrotoluene	ND		26.5	"				
.6-Dinitrotoluene	ND		26.5	"	"			
Benzoic acid	ND		330	"				
Benzyl alcohol	ND		13.2	"				
sophorone	ND		6.62			"		

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

		Semivolati	le Organic (Compounds by	/ EPA 8270)D		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
B-Total Comp (A5G0329-04RE2)			Matrix: Soi	l Ba	atch: 50707	14		
Azobenzene (1,2-DPH)	ND		6.62	ug/kg dry	1	"	EPA 8270D	
Bis(2-Ethylhexyl) adipate	ND		66.2	•	"	"	"	
3,3'-Dichlorobenzidine	ND		26.5	"	"	"	"	
1,2-Dinitrobenzene	ND		66.2	"	"	"	"	
1,3-Dinitrobenzene	ND		66.2	**	"	"	"	
1,4-Dinitrobenzene	ND		66.2	**	"	"	"	
Pyridine	ND		13.2		"	"	"	
Surrogate: Nitrobenzene-d5 (Surr)		Red	covery: 77 %	Limits: 37-122 %	"	"	"	
2-Fluorobiphenyl (Surr)			65 %	Limits: 44-115 %	"	"		
Phenol-d6 (Surr)			60 %	Limits: 33-122 %	"	"	"	
p-Terphenyl-d14 (Surr)			97 %	Limits: 54-127%	"	"	"	
2-Fluorophenol (Surr)			63 %	Limits: 35-115 %	"	"		
2,4,6-Tribromophenol (Surr)			88 %	Limits: 39-132 %	"	"		Q-41

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)													
			Reporting										
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes					
BB-S Comp (A5G0329-01)			Matrix: Soil										
Batch: 5070314													
Arsenic	4.29		1.02	mg/kg dry	10	07/13/15 19:11	EPA 6020A						
BB-C Comp (A5G0329-02)			Matrix: Soil										
Batch: 5070314													
Arsenic	4.43		1.04	mg/kg dry	10	07/13/15 19:29	EPA 6020A						
BB-N Comp (A5G0329-03)			Matrix: Soil										
Batch: 5070314													
Arsenic	4.46		1.10	mg/kg dry	10	07/13/15 19:34	EPA 6020A						
BB-Total Comp (A5G0329-04)			Matrix: Soil										
Batch: 5070314													
Arsenic	3.91		1.10	mg/kg dry	10	07/13/15 19:38	EPA 6020A						
Cadmium	ND		0.220		"	"	"						
Copper	25.2		2.20		"		"						
Manganese	323		1.10		"		"						
Mercury	ND		0.0881		"	"	"						
Zinc	28.9		4.40		"	"	"						
Batch: 5070723													
Chromium	8.59		1.10		"	07/28/15 22:56	"						
Lead	3.36		0.220		"		"						

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

ANALYTICAL SAMPLE RESULTS

			Percent I	Ory Weight				
			Reporting				_	
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
BB-S Comp (A5G0329-01)			Matrix: Soil	Ва	atch: 50702	99		
% Solids	94. 7		1.00	% by Weight	1	07/14/15 09:14	EPA 8000C	
BB-C Comp (A5G0329-02)			Matrix: Soil	Ва	atch: 50702	99		
% Solids	95.8		1.00	% by Weight	1	07/14/15 09:14	EPA 8000C	
BB-N Comp (A5G0329-03)			Matrix: Soil	Ва	atch: 50702	99		
% Solids	96.0		1.00	% by Weight	1	07/14/15 09:14	EPA 8000C	
BB-Total Comp (A5G0329-04)			Matrix: Soil	Ва	atch: 50702	99		
% Solids	95.6		1.00	% by Weight	1	07/14/15 09:14	EPA 8000C	

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bip	henyls	by EPA 80)82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070726 - EPA 3546							Soi	I				
Blank (5070726-BLK1)				Prep	ared: 07/	27/15 12:08	Analyzed:	07/27/15 17	7:53			C-07
EPA 8082A												
Aroclor 1016	ND		8.33	ug/kg wet	1							
Aroclor 1221	ND		8.33	"	"							
Aroclor 1232	ND		8.33	"	"							
Aroclor 1242	ND		8.33	"	"							
Aroclor 1248	ND		8.33	"	"							
Aroclor 1254	ND		8.33	"	"							
Aroclor 1260	ND		8.33	"	"							
Surr: Decachlorobiphenyl (Surr)		Re	covery: 97 %	Limits: 72-1	26%	Dilı	ution: 1x					
LCS (5070726-BS1)				Prep	ared: 07/	27/15 12:08	Analyzed:	07/27/15 18	3:11			C-07
EPA 8082A												
Aroclor 1016	204		10.0	ug/kg wet	1	250		82	47-134%			
Aroclor 1260	269		10.0	"	"	"		108	53-140%			
Surr: Decachlorobiphenyl (Surr)		Re	covery: 98 %	Limits: 72-1	26%	Dilı	ution: 1x					
Duplicate (5070726-DUP1)				Prep	ared: 07/	27/15 12:08	Analyzed:	07/27/15 18	3:29			C-07
QC Source Sample: BB-Total Comp	(A5G0329-0	14)										
EPA 8082A												
Aroclor 1016	ND		9.16	ug/kg dry	1		ND				30%	
Aroclor 1221	ND		9.16	"	"		ND				30%	
Aroclor 1232	ND		9.16	"	"		ND				30%	
Aroclor 1242	ND		9.16	"	"		ND				30%	
Aroclor 1248	ND		9.16	"	"		ND				30%	
Aroclor 1254	ND		9.16	"	"		ND				30%	
Aroclor 1260	ND		9.16	"	"		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Re	covery: 88 %	Limits: 72-1	26%	Dilı	ution: 1x					

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

### A8681B Aldrin ND				Organoci	nlorine Pes	ticides	by EPA 80)81B				
Prepared Or/27/15 09-39 Analyzed: 07/30/15 15:48 Crepton Ore Ore	Analyte	Result	MDL		Units	Dil.	-		%REC		RPD	Notes
Aldrin	Batch 5070768 - EPA 3546	/3640A (G	PC)					Soi	l			
Aldrin ND	Blank (5070768-BLK1)				Prepa	ared: 07/2	27/15 09:39	Analyzed:	07/30/15 15	5:48		C-05
alpha-BHC ND	EPA 8081B											
algars-Park ND	Aldrin	ND		1.67								
Section No	alpha-BHC	ND		1.67	"	"						
### STATE No.	beta-BHC	ND		1.67	"	"						
Samma-Shrk (Embanie) ND	delta-BHC	ND		1.67	"	"						
Cast-Chordane	gamma-BHC (Lindane)	ND		1.67	"	"						
Hans-Cherotane ND	cis-Chlordane	ND		1.67	"	"						
A,4-DDE	trans-Chlordane	ND		1.67	"	"						
4,4'-DDT ND	4,4'-DDD	ND		1.67	"	"						
Dieldrin ND	4,4'-DDE	ND		1.67	"	"						
Endosulfan I ND	4,4'-DDT	ND		1.67	"	"						
Endosulfan II ND 1.67 " "	Dieldrin	ND		1.67	"	"						
Endosulfan sulfate ND 1.67 " "	Endosulfan I	ND		1.67	"	"						
Endrin ND 1.67 " "	Endosulfan II	ND		1.67	"	"						
Endrin Aldehyde ND 1.67 " "	Endosulfan sulfate	ND		1.67	"	"						
Endrin ketone ND 1.67 " "	Endrin	ND		1.67	"	"						
Heptachlor ND 1.67 " "	Endrin Aldehyde	ND		1.67	"	"						
Heptachlor epoxide ND 1.67 " "	Endrin ketone	ND		1.67	"	"						
Methoxychlor ND 5.00 " "	Heptachlor	ND		1.67	"	"						
Chlordane (Technical) ND 50.0 " "	Heptachlor epoxide	ND		1.67	"	"						
Toxaphene (Total) ND ND Recovery: 66 % Limits: 42-129 % Dilution: Ix Decachlorobiphenyl (Surr) Prepared: 07/27/15 09:39 Analyzed: 07/30/15 16:07 EPA 8081B Aldrin 44.7 44.7 2.00 ug/kg wet 1 50.0 " " 94.5-136% 44.5 alpha-BHC 44.2 2.00 " " " 89 45-137% 89 45-137% 88 50-136% 88 50-136%	Methoxychlor	ND		5.00	"	"						
Sur: 2,4,5,6-TCMX (Surr) Recovery: 66 % Limits: 42-129 % Dilution: 1x Q-4	Chlordane (Technical)	ND		50.0	"	"						
Decachlorobiphenyl (Surr) 109 % 65-151 %	Toxaphene (Total)	ND		50.0	"	"						
Prepared: 07/27/15 09:39 Analyzed: 07/30/15 16:07 C-	Surr: 2,4,5,6-TCMX (Surr)		R	ecovery: 66 %	Limits: 42-1	29 %	Dilı	ution: 1x				
EPA 8081B Aldrin	Decachlorobiphenyl (Surr)				65-1	51 %		"				Q-41
Aldrin 44.7 2.00 ug/kg wet 1 50.0 89 45-136% alpha-BHC 44.5 2.00 " " " 89 45-137% beta-BHC 44.2 2.00 " " " 88 50-136%	LCS (5070768-BS1)				Prep	ared: 07/2	27/15 09:39	Analyzed:	07/30/15 16	5:07		C-05
alpha-BHC 44.5 2.00 " " " 89 45-137% beta-BHC 44.2 2.00 " " " 88 50-136%	EPA 8081B											
beta-BHC 44.2 2.00 " " " 88 50-136%	Aldrin	44.7		2.00	ug/kg wet				89	45-136%		
beta-Bric 44.2 2.00 06 30-13076	alpha-BHC	44.5		2.00	"	"	"		89	45-137%		
delta-BHC 46.4 2.00 " " " 93 47-139%	beta-BHC	44.2		2.00	"	"	"		88	50-136%		
	delta-BHC	46.4		2.00	"	"	"		93	47-139%		

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

Organochlorine Pesticides by EPA 8081B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070768 - EPA 3546	3640A (G	PC)					Soi	ı				
LCS (5070768-BS1)				Prep	ared: 07/	27/15 09:39	Analyzed:	07/30/15 1	6:07			C-05
gamma-BHC (Lindane)	45.7		2.00	"	"	"		91	49-135%			
cis-Chlordane	47.6		2.00	"	"	"		95	54-133%			
trans-Chlordane	49.6		2.00	"	"	"		99	53-135%			
4,4'-DDD	56.0		2.00	"	"	"		112	56-139%			Q-41
4,4'-DDE	51.0		2.00	"	"	"		102	56-134%			
4,4'-DDT	65.6		2.00	"	"	"		131	50-141%			Q-41
Dieldrin	51.6		2.00	"	"	"		103	56-136%			
Endosulfan I	50.2		2.00	"	"	"		100	52-132%			
Endosulfan II	55.8		2.00	"	"	"		112	53-134%			Q-41
Endosulfan sulfate	57.3		2.00	"	"	"		115	55-136%			Q-41
Endrin	55.9		2.00	"	"	"		112	56-140%			Q-41
Endrin Aldehyde	51.5		2.00	"	"	"		103	35-137%			Q-41
Endrin ketone	56.2		2.00	"	"	"		112	55-136%			Q-41
Heptachlor	46.0		2.00	"	"	"		92	47-136%			
Heptachlor epoxide	48.5		2.00	"	"	"		97	52-136%			
Methoxychlor	72.5		6.00	"	"	"		145	52-143%			Q-41
Surr: 2,4,5,6-TCMX (Surr)		R	ecovery: 73 %	Limits: 42-1	29 %	Dilı	ution: 1x					
Decachlorobiphenyl (Surr)			119 %	65-1	51 %		"					Q-41
Duplicate (5070768-DUP1)				Prep	ared: 07/	27/15 09:39	Analyzed:	07/30/15 10	6:43			C-05
QC Source Sample: BB-Total Com	p (A5G0329-0	04RE1)										
EPA 8081B												
Aldrin	ND		1.75	ug/kg dry	1		ND				30%	
alpha-BHC	ND		1.75	"	"		ND				30%	
beta-BHC	ND		1.75	"	"		ND				30%	
delta-BHC	ND		1.75	"	"		ND				30%	
gamma-BHC (Lindane)	ND		1.75	"	"		ND				30%	
cis-Chlordane	ND		1.75	"	"		ND				30%	
trans-Chlordane	ND		1.75	"	"		ND				30%	
4,4'-DDD	ND		1.75	"	"		ND				30%	
4,4'-DDE	ND		1.75	"	"		ND				30%	
4,4'-DDT	ND		1.75	"			ND				30%	

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoci	nlorine Pes	uciaes	Dy EPA 80	761B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070768 - EPA 354	16/3640A (GI	PC)					Soi	ı				
Duplicate (5070768-DUP1)				Prepa	red: 07/	27/15 09:39	Analyzed:	07/30/15	16:43			C-0
QC Source Sample: BB-Total Co	mp (A5G0329-0	4RE1)										
Dieldrin	ND		1.75	"	"		ND				30%	
Endosulfan I	ND		1.75	"	"		ND				30%	
Endosulfan II	ND		1.75	"	"		ND				30%	
Endosulfan sulfate	ND		1.75	"	"		ND				30%	
Endrin	ND		1.75	"	"		ND				30%	
Endrin Aldehyde	ND		1.75	"	"		ND				30%	
Endrin ketone	ND		1.75	"	"		ND				30%	
Heptachlor	ND		1.75	"	"		ND				30%	
Heptachlor epoxide	ND		1.75	"	"		ND				30%	
Methoxychlor	ND		5.26	"	"		ND				30%	
Chlordane (Technical)	ND		52.6	"	"		ND				30%	
Toxaphene (Total)	ND		52.6	"	"		ND				30%	
Surr: 2,4,5,6-TCMX (Surr)		Re	ecovery: 76 %	Limits: 42-1.	29 %	Dilı	ution: 1x					
Decachlorobiphenyl (Surr)			119 %	65-1.	51 %		"					Q-41
Matrix Spike (5070768-MS1)				Prepa	red: 07/	27/15 09:39	Analyzed:	07/30/15	17:02			C-0
QC Source Sample: BB-Total Co	mp (A5G0329-0	4RE1)										
EPA 8081B												
Aldrin	40.4		1.77	ug/kg dry	1	44.4	ND	91	45-136%			
alpha-BHC	40.5		1.77	"	"	"	ND	91	45-137%			
beta-BHC	40.6		1.77	"	"	"	ND	92	50-136%			
delta-BHC	41.8		1.77	"	"	"	ND	94	47-139%			
gamma-BHC (Lindane)	40.9		1.77	"	"	"	ND	92	49-135%			
cis-Chlordane	43.3		1.77	"	"	"	ND	98	54-133%			
trans-Chlordane	43.8		1.77	"	"	"	ND	99	53-135%			
4,4'-DDD	47.0		1.77	"	"		ND	106	56-139%			Q-41
4,4'-DDE	44.2		1.77	"	"	"	ND	100	56-134%			
4,4'-DDT	51.3		1.77	"	"		ND	116	50-141%			Q-41
Dieldrin	44.3		1.77	"	"	"	ND	100	56-136%			
Endosulfan I	42.4		1.77				ND	96	52-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoc	hlorine Pes	ticides	by EPA 80	081B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070768 - EPA 3546/	3640A (G	PC)					Soi	ı				
Matrix Spike (5070768-MS1)				Prep	ared: 07	27/15 09:39	Analyzed:	07/30/15 1	7:02			C-05
QC Source Sample: BB-Total Comp	(A5G0329-0	04RE1)										
Endosulfan II	47.9		1.77	ug/kg dry	"	"	ND	108	53-134%			Q-41
Endosulfan sulfate	47.7		1.77	"	"	"	ND	108	55-136%			Q-41
Endrin	48.1		1.77	"	"	"	ND	108	56-140%			Q-41
Endrin Aldehyde	44.2		1.77	"	"	"	ND	100	35-137%			Q-41
Endrin ketone	48.6		1.77	"	"	"	ND	109	55-136%			Q-41
Heptachlor	41.2		1.77	"	"	"	ND	93	47-136%			
Heptachlor epoxide	41.0		1.77	"	"	"	ND	93	52-136%			
Methoxychlor	60.7		5.32	"	"	"	ND	137	52-143%			Q-41
Surr: 2,4,5,6-TCMX (Surr)		Re	ecovery: 75 %	Limits: 42-1	29 %	Dil	ution: 1x					
Decachlorobiphenyl (Surr)			111 %	65-1	51 %		"					Q-41

Apex Laboratories

Dund by fruit

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	ompour	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546							Soil	<u> </u>				
Blank (5070714-BLK1)				Prepa	ared: 07/2	27/15 09:41	Analyzed:	07/27/15 13	:16			
EPA 8270D												
Acenaphthene	ND		2.50	ug/kg wet	1							
Acenaphthylene	ND		2.50	"	"							
Anthracene	ND		2.50	"	"							
Benz(a)anthracene	ND		2.50	"	"							
Benzo(a)pyrene	ND		3.75	"	"							
Benzo(b)fluoranthene	ND		3.75	"	"							
Benzo(k)fluoranthene	ND		3.75	"	"							
Benzo(b+k)fluoranthene(s)	ND		7.50	"	"							
Benzo(g,h,i)perylene	ND		2.50	"	"							
Chrysene	ND		2.50	"	"							
Dibenz(a,h)anthracene	ND		2.50	"	"							
Fluoranthene	ND		2.50	"	"							
Fluorene	ND		2.50									
Indeno(1,2,3-cd)pyrene	ND		2.50									
l-Methylnaphthalene	ND		5.00									
2-Methylnaphthalene	ND		5.00	"								
Naphthalene	ND		5.00	"								
Phenanthrene	ND		2.50									
Pyrene	ND		2.50									
Carbazole	ND		3.75									
Dibenzofuran	ND		2.50									
4-Chloro-3-methylphenol	ND		25.0									
2-Chlorophenol	ND		12.5									
2,4-Dichlorophenol	ND		12.5									
2,4-Dimethylphenol	ND		12.5									
2,4-Dinitrophenol	ND		62.5									
4,6-Dinitro-2-methylphenol	ND		62.5									
2-Methylphenol	ND		6.25									
+4-Methylphenol(s)	ND		6.25									
-Nitrophenol	ND		25.0	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270D												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5070714 - EPA 3546							Soil						
Blank (5070714-BLK1)				Prep	ared: 07/2	27/15 09:41	Analyzed: (7/27/15 13	:16				
4-Nitrophenol	ND		25.0	ug/kg wet	"								
Pentachlorophenol (PCP)	ND		25.0	"	"								
Phenol	ND		5.00	"	"								
2,3,4,6-Tetrachlorophenol	ND		12.5	"	"								
2,3,5,6-Tetrachlorophenol	ND		12.5	"	"								
2,4,5-Trichlorophenol	ND		12.5	"	"								
2,4,6-Trichlorophenol	ND		12.5	"	"								
Bis(2-ethylhexyl)phthalate	ND		37.5	"	"								
Butyl benzyl phthalate	ND		25.0	"	"								
Diethylphthalate	ND		25.0	"	"								
Dimethylphthalate	ND		25.0	"	"								
Di-n-butylphthalate	ND		25.0	"	"								
Di-n-octyl phthalate	ND		25.0	"	"								
N-Nitrosodimethylamine	ND		6.25	"	"								
N-Nitroso-di-n-propylamin	ND		6.25	"	"								
N-Nitrosodiphenylamine	ND		6.25	"	"								
Bis(2-Chloroethoxy) methane	ND		6.25	"	"								
Bis(2-Chloroethyl) ether	ND		6.25	"	"								
Bis(2-Chloroisopropyl)	ND		6.25	"	"								
Hexachlorobenzene	ND		2.50	"	"								
Hexachlorobutadiene	ND		6.25	"	"								
Hexachlorocyclopentadiene	ND		12.5	"	"								
Hexachloroethane	ND		6.25	"	"								
-Chloronaphthalene	ND		2.50	"	"								
,2-Dichlorobenzene	ND		6.25	"	"								
,3-Dichlorobenzene	ND		6.25	"	"								
,4-Dichlorobenzene	ND		6.25	"	"								
,2,4-Trichlorobenzene	ND		6.25										

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

Analista	D14	MDI	Reporting	I Init-	Dil	Spike	Source	0/BEC	%REC	DDD	RPD	N-4-
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	KPD	Limit	Notes
Batch 5070714 - EPA 3546							Soi	I				
Blank (5070714-BLK1)				Prepa	red: 07/	27/15 09:41	Analyzed:	07/27/15 1	3:16			
4-Bromophenyl phenyl ether	ND		6.25	ug/kg wet	"							
4-Chlorophenyl phenyl ether	ND		6.25	"								
Aniline	ND		12.5	"	"							
4-Chloroaniline	ND		6.25	"	"							
2-Nitroaniline	ND		50.0	"	"							
3-Nitroaniline	ND		50.0	"	"							
4-Nitroaniline	ND		50.0	"	"							
Nitrobenzene	ND		25.0	"	"							
2,4-Dinitrotoluene	ND		25.0	"	"							
2,6-Dinitrotoluene	ND		25.0	"	"							
Benzoic acid	ND		312	"	"							
Benzyl alcohol	ND		12.5	"	"							
Isophorone	ND		6.25	"	"							
Azobenzene (1,2-DPH)	ND		6.25	"	"							
Bis(2-Ethylhexyl) adipate	ND		62.5	"								
3,3'-Dichlorobenzidine	ND		25.0	"								
1,2-Dinitrobenzene	ND		62.5	"								
1,3-Dinitrobenzene	ND		62.5	"								
1,4-Dinitrobenzene	ND		62.5	"								
Pyridine	ND		12.5	"								
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 94 %	Limits: 37-12	22 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			78 %	44-11	5 %		"					
Phenol-d6 (Surr)			72 %	33-12	22 %		"					
p-Terphenyl-d14 (Surr)			93 %	54-12			"					
2-Fluorophenol (Surr)			75 %	35-11			"					
2,4,6-Tribromophenol (Surr)			94 %	39-13	32 %		"					Q-4
LCS (5070714-BS1)				Prepa	red: 07/	27/15 09:41	Analyzed:	07/27/15 1	3:56			
EPA 8270D												
Acenaphthene	466		2.67	ug/kg wet	1	533		87	40-122%			
Acenaphthylene	448		2.67	"	"			84	32-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			emivolatile	Organic Co	mpoun	ids by EP/	4 82/0D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546							Soil					
.CS (5070714-BS1)				Prepa	ared: 07/2	7/15 09:41	Analyzed:	07/27/15 13	3:56			
Anthracene	453		2.67	ug/kg wet	"	"		85	47-123%			
Benz(a)anthracene	500		2.67	"	"	"		94	49-126%			
Benzo(a)pyrene	524		4.00	"	"	"		98	45-129%			
Benzo(b)fluoranthene	524		4.00	"	"	"		98	45-132%			
Benzo(k)fluoranthene	492		4.00	"	"	"		92	47-132%			
Benzo(b+k)fluoranthene(s)	1040		8.00	"	"	1070		97	45-132%			
Benzo(g,h,i)perylene	507		2.67	"	"	533		95	43-134%			
Chrysene	486		2.67	"	"			91	50-124%			
Dibenz(a,h)anthracene	502		2.67	"	"	"		94	45-134%			
Fluoranthene	469		2.67	"	"	"		88	50-127%			
Fluorene	449		2.67	"	"			84	43-125%			
Indeno(1,2,3-cd)pyrene	492		2.67	"	"			92	45-133%			
l-Methylnaphthalene	444		5.33	"	"			83	40-120%			
2-Methylnaphthalene	452		5.33	"	"			85	38-122%			
Naphthalene	428		5.33		"			80	35-123%			
Phenanthrene	427		2.67		"			80	50-121%			
Pyrene	443		2.67		"			83	47-127%			
Carbazole	468		4.00	"	"			88	50-122%			
Dibenzofuran	433		2.67	"	"			81	44-120%			
4-Chloro-3-methylphenol	540		26.7		"			101	45-122%			
2-Chlorophenol	507		13.3		"			95	34-121%			
2,4-Dichlorophenol	509		13.3		"				40-122%			
2,4-Dimethylphenol	532		13.3		"				30-127%			
2,4-Dinitrophenol	516		66.7	"	"			97	5-137%			
1,6-Dinitro-2-methylphenol	529		66.7		"			99	29-132%			
2-Methylphenol	531		6.67		"				32-122%			
3+4-Methylphenol(s)	529		6.67		"				34-120%			
2-Nitrophenol	501		26.7		"				36-123%			
1-Nitrophenol	494		26.7		"				30-12376			
Pentachlorophenol (PCP)	559		26.7		"				25-133%			
Phenol	522		5.33						34-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546					_		Soil	<u> </u>		_		
LCS (5070714-BS1)				Pre	pared: 07/2	27/15 09:41	Analyzed: (07/27/15 1	3:56			
2,3,4,6-Tetrachlorophenol	524		13.3	ug/kg wet	"	"		98	44-125%			
2,3,5,6-Tetrachlorophenol	520		13.3	"	"	"		97	40-120%			
2,4,5-Trichlorophenol	521		13.3	"	"	"		98	41-124%			
2,4,6-Trichlorophenol	518		13.3	"	"	"		97	39-126%			
Bis(2-ethylhexyl)phthalate	550		40.0	"	"	"		103	51-133%			
Butyl benzyl phthalate	555		26.7	"	"	"		104	48-132%			
Diethylphthalate	479		26.7	"	"	"		90	50-124%			
Dimethylphthalate	507		26.7		"	"		95	48-124%			
Di-n-butylphthalate	495		26.7		"	"		93	51-128%			
Di-n-octyl phthalate	533		26.7		"	"		100	44-140%			Q-31
N-Nitrosodimethylamine	387		6.67	"	"	"		73	23-120%			
N-Nitroso-di-n-propylamin	581		6.67	"	"	"		109	36-120%			
e NATATI	405				,,			01	20.1270/			
N-Nitrosodiphenylamine	485		6.67		,,			91	38-127%			
Bis(2-Chloroethoxy) methane	480		6.67					90	36-121%			
Bis(2-Chloroethyl) ether	479		6.67	"	"	"		90	31-120%			
Bis(2-Chloroisopropyl)	539		6.67	"	"	"		101	33-131%			Q-41
ether Hexachlorobenzene	521		2.67					98	44-122%			
Hexachlorobutadiene	532		6.67					100	32-123%			
Hexachlorocyclopentadiene	642		13.3					120	5-140%			Q-41
Hexachloroethane	521		6.67		"			98	28-120%			
2-Chloronaphthalene	445		2.67		"			83	41-120%			
1,2-Dichlorobenzene	447		6.67		"			84	33-120%			
1,3-Dichlorobenzene	450		6.67					84	30-120%			
1,4-Dichlorobenzene	456		6.67					85	31-120%			
1,2,4-Trichlorobenzene	446		6.67					84	34-120%			
	543		6.67		,,			102	46-124%			
4-Bromophenyl phenyl ether	343		0.07					102	40-124%			
4-Chlorophenyl phenyl	486		6.67	"	"	"		91	45-121%			
ether Aniline	416		13.3	"				78	7-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			n .:			0.3			A/DES		222	
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546							Soi	ı				
LCS (5070714-BS1)				Prepa	ared: 07/	27/15 09:41	Analyzed:	07/27/15 13	3:56			
4-Chloroaniline	226		6.67	ug/kg wet	"	"		42	16-120%			
2-Nitroaniline	505		53.3	"	"	"		95	44-127%			
3-Nitroaniline	395		53.3	"	"	"		74	33-120%			
4-Nitroaniline	498		53.3	"	"	"		93	35-120%			
Nitrobenzene	557		26.7	"	"	"		105	34-122%			
2,4-Dinitrotoluene	514		26.7	"	"	"		96	48-126%			
2,6-Dinitrotoluene	540		26.7	"	"	"		101	46-124%			
Benzoic acid	572		333	"	"	1070		54	5-140%			
Benzyl alcohol	536		13.3	"	"	533		100	29-122%			
Isophorone	550		6.67	"	"	"		103	30-122%			
Azobenzene (1,2-DPH)	551		6.67	"	"	"		103	39-125%			
Bis(2-Ethylhexyl) adipate	535		66.7	"	"	"		100	60-121%			
3,3'-Dichlorobenzidine	876		26.7	"	"	1070		82	22-121%			
1,2-Dinitrobenzene	525		66.7	"	"	533		98	44-120%			
1,3-Dinitrobenzene	532		66.7	"	"			100	42-127%			
1,4-Dinitrobenzene	553		66.7	"	"			104	37-132%			
Pyridine	338		13.3	"	"	"		63	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 100 %	Limits: 37-1	22 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			77 %		15 %		"					
Phenol-d6 (Surr)			89 %		22 %		"					
p-Terphenyl-d14 (Surr) 2-Fluorophenol (Surr)			111 % 91 %		27 % 15 %		"					
2,4,6-Tribromophenol (Surr)			112 %		32 %		"					Q-4
Duplicate (5070714-DUP1)				Pren	ared: 07/	27/15 09:41	Analyzed.	07/27/15 16	5:32			
QC Source Sample: BB-Total Comp	(A5G0329-0	4RE2)					,,					
EPA 8270D	,	,										
Acenaphthene	ND		2.67	ug/kg dry	1		ND				30%	
Acenaphthylene	ND		2.67	"	"		ND				30%	
Anthracene	ND		2.67	"	"		ND				30%	
Benz(a)anthracene	ND		2.67	"	"		ND				30%	
Benzo(a)pyrene	ND		4.00				ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	mpou	nds by EP/	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546	6						Soi	I				
Duplicate (5070714-DUP1)				Prepa	ared: 07/2	27/15 09:41	Analyzed:	07/27/15 16	:32			
QC Source Sample: BB-Total Com	р (А5G0329-0	4RE2)										
Benzo(b)fluoranthene	ND		4.00	ug/kg dry	"		ND				30%	
Benzo(k)fluoranthene	ND		4.00	"	"		ND				30%	
Benzo(b+k)fluoranthene(s)	ND		8.01	"	"		ND				30%	
Benzo(g,h,i)perylene	ND		2.67	"	"		ND				30%	
Chrysene	ND		2.67	"	"		ND				30%	
Dibenz(a,h)anthracene	ND		2.67	"	"		ND				30%	
Fluoranthene	ND		2.67	"	"		ND				30%	
Fluorene	ND		2.67	"	"		ND				30%	
Indeno(1,2,3-cd)pyrene	ND		2.67	"	"		ND				30%	
l-Methylnaphthalene	ND		5.33	"	"		ND				30%	
2-Methylnaphthalene	ND		5.33	"	"		ND				30%	
Naphthalene	ND		5.33	"	"		ND				30%	
Phenanthrene	ND		2.67	"	"		ND				30%	
Pyrene	ND		2.67	"	"		ND				30%	
Carbazole	ND		4.00	"	"		ND				30%	
Dibenzofuran	ND		2.67	"	"		ND				30%	
4-Chloro-3-methylphenol	ND		26.7				ND				30%	
2-Chlorophenol	ND		13.3	"	"		ND				30%	
2,4-Dichlorophenol	ND		13.3	"			ND				30%	
2,4-Dimethylphenol	ND		13.3	"			ND				30%	
2,4-Dinitrophenol	ND		66.7	"			ND				30%	
4,6-Dinitro-2-methylphenol	ND		66.7	"			ND				30%	
2-Methylphenol	ND		6.67	"			ND				30%	
3+4-Methylphenol(s)	ND		6.67	"	"		ND				30%	
2-Nitrophenol	ND		26.7	"	"		ND				30%	
1-Nitrophenol	ND		26.7	"	"		ND				30%	
Pentachlorophenol (PCP)	ND		26.7	"			ND				30%	
Phenol	ND		5.33	"			ND				30%	
2,3,4,6-Tetrachlorophenol	ND		13.3	"			ND				30%	
2,3,5,6-Tetrachlorophenol	ND		13.3	"			ND				30%	
,,,,,,, remachiorophenor	110		15.5				1112				3070	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual to buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	ompou	nds by EP/	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546	6						Soi	<u> </u>				
Duplicate (5070714-DUP1)				Prepa	ared: 07/	27/15 09:41	Analyzed:	07/27/15 16	:32			
QC Source Sample: BB-Total Con	ıр (A5G0329-0	4RE2)										
2,4,5-Trichlorophenol	ND		13.3	ug/kg dry	"		ND				30%	
2,4,6-Trichlorophenol	ND		13.3	"	"		ND				30%	
Bis(2-ethylhexyl)phthalate	ND		40.0	"	"		ND				30%	
Butyl benzyl phthalate	ND		26.7	"	"		ND				30%	
Diethylphthalate	ND		26.7	"	"		ND				30%	
Dimethylphthalate	ND		26.7	"	"		ND				30%	
Di-n-butylphthalate	ND		26.7	"	"		ND				30%	
Di-n-octyl phthalate	ND		26.7	"	"		ND				30%	
N-Nitrosodimethylamine	ND		6.67	"	"		ND				30%	
N-Nitroso-di-n-propylamin e	ND		6.67	"	"		ND				30%	
N-Nitrosodiphenylamine	ND		6.67	"	"		ND				30%	
Bis(2-Chloroethoxy) methane	ND		6.67	"	"		ND				30%	
Bis(2-Chloroethyl) ether	ND		6.67	"	"		ND				30%	
Bis(2-Chloroisopropyl) ether	ND		6.67	"	"		ND				30%	
Hexachlorobenzene	ND		2.67	"	"		ND				30%	
Hexachlorobutadiene	ND		6.67	"	"		ND				30%	
Hexachlorocyclopentadiene	ND		13.3	"	"		ND				30%	
Hexachloroethane	ND		6.67	"	"		ND				30%	
2-Chloronaphthalene	ND		2.67	"	"		ND				30%	
1,2-Dichlorobenzene	ND		6.67	"	"		ND				30%	
1,3-Dichlorobenzene	ND		6.67	"	"		ND				30%	
1,4-Dichlorobenzene	ND		6.67	"	"		ND				30%	
1,2,4-Trichlorobenzene	ND		6.67	"	"		ND				30%	
1-Bromophenyl phenyl ether	ND		6.67	"	"		ND				30%	
4-Chlorophenyl phenyl ether	ND		6.67	"	"		ND				30%	
Aniline	ND		13.3	"	"		ND				30%	
4-Chloroaniline	ND		6.67	"	"		ND				30%	

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			emivolatile	Organic Co	Jiipou	ilus by Er	A 02/0D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546	i						Soi	ı				
Duplicate (5070714-DUP1)				Prepa	ared: 07/	27/15 09:41	Analyzed:	07/27/15 16	5:32			
QC Source Sample: BB-Total Com	p (A5G0329-0	4RE2)										
2-Nitroaniline	ND		53.3	ug/kg dry	"		ND				30%	
3-Nitroaniline	ND		53.3	"	"		ND				30%	
4-Nitroaniline	ND		53.3	"	"		ND				30%	
Nitrobenzene	ND		26.7	"	"		ND				30%	
2,4-Dinitrotoluene	ND		26.7	"	"		ND				30%	
2,6-Dinitrotoluene	ND		26.7	"	"		ND				30%	
Benzoic acid	ND		333	"			ND				30%	
Benzyl alcohol	ND		13.3	"	"		ND				30%	
Isophorone	ND		6.67		"		ND				30%	
Azobenzene (1,2-DPH)	ND		6.67		"		ND				30%	
Bis(2-Ethylhexyl) adipate	ND		66.7		"		ND				30%	
3,3'-Dichlorobenzidine	ND		26.7		"		ND				30%	
1,2-Dinitrobenzene	ND		66.7		"		ND				30%	
1,3-Dinitrobenzene	ND		66.7	"	"		ND				30%	
1,4-Dinitrobenzene	ND		66.7		"		ND				30%	
Pyridine	ND		13.3		"		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 81 %	Limits: 37-1	22 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			65 %	44-1	15 %		"					
Phenol-d6 (Surr)			63 %		22 %		"					
p-Terphenyl-d14 (Surr)			96 %		27 %		"					
2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr)			64 % 94 %		15 % 32 %		,,					Q-4
						27/15 00 44		02/02/45 45				~ .
Matrix Spike (5070714-MS1)				Ргера	ared: U//	27/15 09:41	Analyzed:	0//2//15 17	:12			
QC Source Sample: BB-Total Com EPA 8270D	p (A5G0329-0	4KE2)										
Acenaphthene	398		2.71	ug/kg dry	1	541	ND	74	40-122%			
Acenaphthylene	391		2.71	"			ND		32-132%			
Anthracene	436		2.71				ND		47-123%			
Benz(a)anthracene	487		2.71				ND		49-126%			
Benzo(a)pyrene	504		4.05				ND		45-129%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic Co	mpou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546	6						Soi	I				
Matrix Spike (5070714-MS1)				Prepa	ared: 07/2	27/15 09:41	Analyzed:	07/27/15 17	7:12			
QC Source Sample: BB-Total Com	р (А5G0329-0	4RE2)										
Benzo(b)fluoranthene	492		4.05	ug/kg dry	"	"	ND	91	45-132%			
Benzo(k)fluoranthene	478		4.05	"	"		ND	88	47-132%			
Benzo(b+k)fluoranthene(s)	992		8.11	"	"	1080	ND	92	45-132%			
Benzo(g,h,i)perylene	497		2.71	"	"	541	ND	92	43-134%			
Chrysene	475		2.71	"	"	"	ND	88	50-124%			
Dibenz(a,h)anthracene	482		2.71	"	"	"	ND	89	45-134%			
Fluoranthene	457		2.71	"	"	"	ND	85	50-127%			
Fluorene	404		2.71	"	"	"	ND	75	43-125%			
Indeno(1,2,3-cd)pyrene	471		2.71	"	"	"	ND	87	45-133%			
l-Methylnaphthalene	383		5.40	"	"		ND	71	40-120%			
2-Methylnaphthalene	402		5.40	"	"		ND	74	38-122%			
Naphthalene	370		5.40	"	"		ND	68	35-123%			
Phenanthrene	412		2.71	"	"		ND	76	50-121%			
Pyrene	437		2.71	"	"		ND	81	47-127%			
Carbazole	457		4.05	"	"		ND	85	50-122%			
Dibenzofuran	385		2.71	"	"	"	ND	71	44-120%			
4-Chloro-3-methylphenol	466		27.1	"	"		ND	86	45-122%			
2-Chlorophenol	388		13.5	"	"		ND	72	34-121%			
2,4-Dichlorophenol	408		13.5	"	"	"	ND	75	40-122%			
2,4-Dimethylphenol	377		13.5	"	"	"	ND	70	30-127%			
2,4-Dinitrophenol	526		67.6	"	"	"	ND	97	5-137%			
4,6-Dinitro-2-methylphenol	509		67.6	"	"	"	ND	94	29-132%			
2-Methylphenol	383		6.76	"	"	"	ND	71	32-122%			
3+4-Methylphenol(s)	389		6.76	"	"	"	ND	72	34-120%			
2-Nitrophenol	424		27.1	"	"	"	ND	78	36-123%			
4-Nitrophenol	481		27.1	"	"	"	ND	89	30-132%			
Pentachlorophenol (PCP)	528		27.1	"			ND	98	25-133%			
Phenol	404		5.40				ND		34-120%			
2,3,4,6-Tetrachlorophenol	490		13.5				ND	91	44-125%			
2,3,5,6-Tetrachlorophenol	475		13.5				ND	88	40-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			Semivolatile	Organic C	ompou	ilus by EF/	7 02/00					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546							Soil					
Matrix Spike (5070714-MS1)				Prep	ared: 07/2	27/15 09:41	Analyzed: (07/27/15 1	7:12			
QC Source Sample: BB-Total Comp	(A5G0329-0	4RE2)										
2,4,5-Trichlorophenol	464		13.5	ug/kg dry	"	"	ND	86	41-124%			
2,4,6-Trichlorophenol	436		13.5	"		"	ND	81	39-126%			
Bis(2-ethylhexyl)phthalate	531		40.5	"		"	ND	98	51-133%			
Butyl benzyl phthalate	551		27.1	"		"	ND	102	48-132%			
Diethylphthalate	457		27.1	"	"	"	ND	84	50-124%			
Dimethylphthalate	469		27.1	"	"	"	ND	87	48-124%			
Di-n-butylphthalate	486		27.1	"		"	ND	90	51-128%			
Di-n-octyl phthalate	501		27.1	"		"	ND	93	44-140%			Q-31
N-Nitrosodimethylamine	333		6.76	"	"	"	ND	62	23-120%			
N-Nitroso-di-n-propylamin	449		6.76	"		"	ND	83	36-120%			
e e												
N-Nitrosodiphenylamine	420		6.76	"	"	"	ND	78	38-127%			
Bis(2-Chloroethoxy)	395		6.76	"	"	"	ND	73	36-121%			
methane Pis(2 Chlorosthyl) other	367		6.76	"			ND	68	31-120%			
Bis(2-Chloroethyl) ether				,,								0.41
Bis(2-Chloroisopropyl) ether	435		6.76			-	ND	80	33-131%			Q-41
Hexachlorobenzene	481		2.71	"		"	ND	89	44-122%			
Hexachlorobutadiene	429		6.76	"	"	"	ND	79	32-123%			
Hexachlorocyclopentadiene	555		13.5	"	"	"	ND	103	5-140%			Q-41
Hexachloroethane	422		6.76				ND	78	28-120%			
2-Chloronaphthalene	376		2.71	"			ND	70	41-120%			
1,2-Dichlorobenzene	364		6.76	"			ND	67	33-120%			
1,3-Dichlorobenzene	365		6.76				ND	67	30-120%			
1,4-Dichlorobenzene	368		6.76				ND	68	31-120%			
1,2,4-Trichlorobenzene	371		6.76				ND	69	34-120%			
	490		6.76	,,			ND	91	46-124%			
4-Bromophenyl phenyl ether	470		0.70				ND	71	70-12470			
4-Chlorophenyl phenyl	436		6.76	"	"	"	ND	81	45-121%			
ether												
Aniline	313		13.5	"	"	"	ND	58	7-120%			
4-Chloroaniline	346		6.76	"	"	"	ND	64	16-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Qual la buil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

		S	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070714 - EPA 3546							Soil					
Matrix Spike (5070714-MS1)				Prep	ared: 07	27/15 09:41	Analyzed:	07/27/15 1	7:12			
QC Source Sample: BB-Total Comp	(A5G0329-0)4RE2)										
2-Nitroaniline	448		54.0	ug/kg dry	"	"	ND	83	44-127%			
3-Nitroaniline	435		54.0	"	"	"	ND	80	33-120%			
4-Nitroaniline	440		54.0	"	"		ND	81	35-120%			
Nitrobenzene	439		27.1	"	"	"	ND	81	34-122%			
2,4-Dinitrotoluene	497		27.1	"	"	"	ND	92	48-126%			
2,6-Dinitrotoluene	492		27.1	"	"	"	ND	91	46-124%			
Benzoic acid	816		338	"	"	1080	ND	75	5-140%			
Benzyl alcohol	414		13.5	"	"	541	ND	77	29-122%			
Isophorone	461		6.76	"	"		ND	85	30-122%			
Azobenzene (1,2-DPH)	497		6.76	"	"		ND	92	39-125%			
Bis(2-Ethylhexyl) adipate	485		67.6	"	"		ND	90	60-121%			
3,3'-Dichlorobenzidine	860		27.1	"	"	1080	ND	80	22-121%			
1,2-Dinitrobenzene	475		67.6	"	"	541	ND	88	44-120%			
1,3-Dinitrobenzene	488		67.6	"	"		ND	90	42-127%			
1,4-Dinitrobenzene	502		67.6	"	"		ND	93	37-132%			
Pyridine	233		13.5	"	"		ND	43	5-120%			
Surr: Nitrobenzene-d5 (Surr)		Re	covery: 81 %	Limits: 37-1	22%	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			70 %	44-1	15 %		"					
Phenol-d6 (Surr)			70 %	33-1	22 %		"					
p-Terphenyl-d14 (Surr)			109 %	54-1	27 %		"					
2-Fluorophenol (Surr)			71 %		15 %		"					
2,4,6-Tribromophenol (Surr)			102 %	39-1	32 %		"					Q-4

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5070314 - EPA 3051	IA						Soi	l				
Blank (5070314-BLK1)				Prepa	ared: 07/	13/15 15:35	Analyzed:	07/13/15 19	9:01			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Cadmium	ND		0.200	"	"							
Manganese	ND		1.00	"	"							
Mercury	ND		0.0800	"	"							
Zinc	ND		4.00	"								
Blank (5070314-BLK2)				Prepa	ared: 07/	13/15 15:35	Analyzed:	07/14/15 15	5:52			
EPA 6020A												
Copper	ND		2.00	mg/kg wet	10							Q-16
LCS (5070314-BS1)				Prepa	ared: 07/	13/15 15:35	Analyzed:	07/13/15 19	9:06			
EPA 6020A												
Arsenic	48.6		1.00	mg/kg wet	10	50.0		97	80-120%			
Cadmium	50.2		0.200	"	"	"		100	"			
Copper	52.6		2.00	"	"	"		105	"			
Manganese	49.6		1.00	"	"	"		99	"			
Mercury	1.04		0.0800	"	"	1.00		104	"			
Zinc	52.0		4.00	"	"	50.0		104	"			
Duplicate (5070314-DUP1)				Prepa	ared: 07/	13/15 15:35	Analyzed:	07/13/15 19	9:43			
QC Source Sample: BB-Total Com EPA 6020A	р (А5G0329-0	4)										
Arsenic	5.16		1.12	mg/kg dry	10		3.91			28	40%	
Cadmium	ND		0.224	"	"		0.121			***	40%	
Copper	26.0		2.24	"	"		25.2			3	40%	
Manganese	354		1.12	"			323			9	40%	
Mercury	ND		0.0898	"			ND				40%	
Zinc	34.7		4.49		"		28.9			18	40%	
Matrix Spike (5070314-MS1)				Prens	ared: 07/	13/15 15:35	Analyzed:	07/13/15 10	0-48			

QC Source Sample: BB-Total Comp (A5G0329-04)

Quand by frail

EPA 6020A

Apex Laboratories

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5070314 - EPA 3051/	A						Soi	ı					
Matrix Spike (5070314-MS1)				Prep	ared: 07/	13/15 15:35	Analyzed:	07/13/15 1	9:48				
QC Source Sample: BB-Total Comp	(A5G0329-0	14)											
Arsenic	59.1		1.09	mg/kg dry	10	54.3	3.91	102	75-125%				
Cadmium	53.3		0.217	"	"	"	0.121	98	"				
Copper	79.4		2.17	"	"	"	25.2	100	"				
Manganese	381		1.09	"	"	"	323	108	"				
Mercury	1.02		0.0868	"	"	1.09	ND	94	"				
Zinc	87.4		4.34	"	"	54.3	28.9	108	"				

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5070723 - EPA 3051A	١						Soi	I					
Blank (5070723-BLK1)				Prep	ared: 07	27/15 11:17	Analyzed:	07/28/15 2	2:50				
EPA 6020A													
Chromium	ND		1.00	mg/kg wet	10								
Lead	ND		0.200	"	"								
LCS (5070723-BS1)				Prep	ared: 07	27/15 11:17	Analyzed:	07/28/15 2	2:53				
EPA 6020A													
Chromium	51.2		1.00	mg/kg wet	10	50.0		102	80-120%				
Lead	50.8		0.200	"	"	"		102	"				

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits		RPD Limit	Notes	
Batch 5070299 - Total Soli	ids (Dry W	eight)					Soi	I					
Duplicate (5070299-DUP3)				Prep	oared: 07/	13/15 15:29	Analyzed:	07/14/15 09):14				
QC Source Sample: BB-N Comp (EPA 8000C	A5G0329-03)												
% Solids	96.2		1.00	% by Weight	1		96.0			0.2	10%		
Duplicate (5070299-DUP4)				Prep	oared: 07/	13/15 15:30	Analyzed:	07/14/15 09	0:14				
QC Source Sample: BB-Total Com	p (A5G0329-0	04)											
EPA 8000C													
% Solids	95.6		1.00	% by Weight	1		95.6			0	10%		

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Quant to hail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

 11917 NE 95th Street
 Project Number: 1033Q
 Reported:

 Vancouver, WA 98682
 Project Manager: Terry Rice
 08/27/15 11:38

SAMPLE PREPARATION INFORMATION

		Р	olychlorinated Biphe	enyls by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5070726							
A5G0329-04	Soil	EPA 8082A	07/13/15 09:11	07/27/15 12:08	11.38g/5mL	10g/5mL	0.88
		0	rganochlorine Pesti	cides by EPA 8081B			
Prep: EPA 3546/36	40A (GPC)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5070768							
A5G0329-04RE1	Soil	EPA 8081B	07/13/15 09:11	07/27/15 09:39	11.61g/10mL	10g/5mL	1.72
		Semi	volatile Organic Con	npounds by EPA 8270	D		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5070714							
A5G0329-04RE2	Soil	EPA 8270D	07/13/15 09:11	07/27/15 09:41	15.81g/2mL	15g/2mL	0.95
			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5070314							
A5G0329-01	Soil	EPA 6020A	07/13/15 08:40	07/13/15 15:35	0.516g/ 50 mL	0.5g/50mL	0.97
A5G0329-02	Soil	EPA 6020A	07/13/15 08:50	07/13/15 15:35	0.504g/ 50 mL	0.5g/50mL	0.99
A5G0329-03	Soil	EPA 6020A	07/13/15 09:00	07/13/15 15:35	0.475g $/50$ mL	0.5g/50mL	1.05
A5G0329-04	Soil	EPA 6020A	07/13/15 09:11	07/13/15 15:35	0.475g $/50$ mL	0.5g/50mL	1.05
Batch: 5070723							
A5G0329-04	Soil	EPA 6020A	07/13/15 09:11	07/27/15 11:17	0.476g/50mL	0.5g/50mL	1.05
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight	<u> </u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5070299	0.11	EB4 00005	05/10/15 00 10	05/10/15 15 00	437/4/437/	437/4/437/4	374
A5G0329-01	Soil	EPA 8000C	07/13/15 08:40	07/13/15 15:29	1N/A/1N/A	1N/A/1N/A	NA
A5G0329-02	Soil	EPA 8000C	07/13/15 08:50	07/13/15 15:29	1N/A/1N/A	1N/A/1N/A	NA
A5G0329-03	Soil	EPA 8000C	07/13/15 09:00	07/13/15 15:29	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la frail

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

SAMPLE PREPARATION INFORMATION

	Percent Dry Weight												
Prep: Total Solids	(Dry Weigh	<u>t)</u>			Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
A5G0329-04	Soil	EPA 8000C	07/13/15 09:11	07/13/15 15:29	1N/A/1N/A	1N/A/1N/A	NA						

Apex Laboratories

Quant la famil

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia West Engineering, Inc. Project: Storedahl-Evraz

11917 NE 95th StreetProject Number:1033QReported:Vancouver, WA 98682Project Manager:Terry Rice08/27/15 11:38

Notes and Definitions

Qualifiers:

C-05 Extract has undergone a GPC (Gel-Permeation Chromatography) cleanup per EPA 3640A. Reporting levels may be raised due to dilution necessary for cleanup. Sample Final Volume includes the GPC dilution factor, see the Prep page for details.

C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.

Q-16 Reanalysis of an original Batch QC sample.

Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

--- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

AMENDED REPORT

Tigard, OR 97223 12232 S.W. Garden Place 503-718-2323 Phone

Columbia West Engineering, Inc. Vancouver, WA 98682 11917 NE 95th Street

> Project Number: 1033Q Project: Storedahl-Evraz

Project Manager: Terry Rice

503-718-0333 Fax

08/27/15 11:38 Reported:

Lab# A560329 coc 101 APEX LABS CHAIN OF CUSTODY 12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333 Project Name: Storedahl - Evrat Project # 1035Q Company: Columba West Phone: 360-825-296 Fax: 360-823-290 MIT NE Sampled by: Terry Rice ANALYSIS REQUEST 요독주설 Al, Sh. Al, Bh., Be, Cd. Ch, Cr, Co, Cu, Fe, Fe Hg, Mg, Ma, Ma, Ni, K Se, Ag, Na, Ti, V, Z TOTAL DISS TCLF # OF CONTAINERS Mangarese 8260 RBDM VOCs RCRA Metals (8) TCLP Metals (8) Site Location: 8270 SIM PAHS admiton NWTPH-HCID 8260 BTEX Copper NWTPH-Gx 8260 VOC 8270 SVOC 8082 PCBs 1200-COLS Other: LAB ID# MATRIX OTT 000 1200-Z DATE TIME SAMPLE ID 7-13-15 842361 BB-Scomp 850 仌 BB-C-Comp X BB- N Comp 200 911 BB - total comp Special instructions: Arsenz. Normal Turn Around Time (TAT) = 7-10 Business Days YES NO Scomp, Ccomp, and 1 Day 2 Day 3 Day Nomp or 5 pt composites. Total comp is a 25pt Wed 1100Am TAT Requested (circle) 4 DAY 5 DAY for possible more tests SAMPLES ARE HELD FOR 30 DAYS RELINQUISHED BY: RELINQUISHED BY: RECEIVED BY:

Apex Laboratories

Darrell Auvil For Darwin Thomas, Business Development Director